Quantum fluctuations can inhibit long-range ordering in frustrated magnets and potentially lead to quantum spin liquid (QSL) phases. A prime example are gapless QSLs with emergent U(1) gauge fields, which have been understood to be described in terms of quantum electrodynamics in 2+1 dimension (QED3). Despite several promising candidate materials, however, a complicating factor for their realisation is the presence of other degrees of freedom. In particular lattice distortions can act to relieve magnetic frustration, precipitating conventionally ordered states. In this work, we use field-theoretic arguments as well as extensive numerical simulations to show that the U(1) Dirac QSL on the triangular and kagome lattices exhibits a weak-coupling instability due to the coupling of monopoles of the emergent gauge field to lattice distortions, leading to valence-bond solid ordering. This generalises the spin-Peierls instability of one-dimensional quantum critical spin chains to two-dimensional algebraic QSLs. We study static distortions as well as quantum-mechanical phonons. Even in regimes where the QSL is stable, the singular spin-lattice coupling leads to marked temperature-dependent corrections to the phonon spectrum, which provide salient experimental signatures of spin fractionalisation. We discuss the coupling of QSLs to the lattice as a general tool for their discovery and characterisation.
- Award ID(s):
- 1834750
- PAR ID:
- 10215042
- Date Published:
- Journal Name:
- npj Quantum Materials
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2397-4648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract A recent focus of quantum spin liquid (QSL) studies is how disorder/randomness in a QSL candidate affects its true magnetic ground state. The ultimate question is whether the QSL survives disorder or the disorder leads to a “spin-liquid-like” state, such as the proposed random-singlet (RS) state. Since disorder is a standard feature of most QSL candidates, this question represents a major challenge for QSL candidates. YbMgGaO 4 , a triangular lattice antiferromagnet with effective spin-1/2 Yb 3+ ions, is an ideal system to address this question, since it shows no long-range magnetic ordering with Mg/Ga site disorder. Despite the intensive study, it remains unresolved as to whether YbMgGaO 4 is a QSL or in the RS state. Here, through ultralow-temperature thermal conductivity and magnetic torque measurements, plus specific heat and DC magnetization data, we observed a residual κ 0 / T term and series of quantum spin state transitions in the zero temperature limit for YbMgGaO 4 . These observations strongly suggest that a QSL state with itinerant excitations and quantum spin fluctuations survives disorder in YbMgGaO 4 .more » « less
-
Abstract Due to the small photon momentum, optical spectroscopy commonly probes magnetic excitations only at the center of the Brillouin zone; however, there are ways to override this restriction. In case of the distorted kagome quantum magnet Y‐kapellasite, Y3Cu9(OH)19Cl8, under scrutiny here, the spin (magnon) density of states (SDOS) can be accessed over the entire Brillouin zone through three‐center magnon excitations. This mechanism is aided by the three different magnetic sublattices and strong short‐range correlations in the distorted kagome lattice. The results of THz time‐domain experiments agree remarkably well with linear spin‐wave theory (LSWT). Relaxing the conventional zone‐center constraint of photons gives a new aspect to probe magnetism in matter.
-
In solid materials, non-trivial topological states, electron correlations and magnetism are central ingredients for realizing quantum properties, including unconventional superconductivity, charge and spin density waves and quantum spin liquids. The kagome lattice, made up of cornersharing triangles, can host these three ingredients simultaneously and has proved to be a fertile platform for studying diverse quantum phenomena including those stemming from the interplay of these ingredients. This Review introduces the fundamental properties of the kagome lattice and discusses the complex phenomena observed in several materials systems, including the intertwining of charge order and superconductivity in some kagome metals, the modulation of magnetism and topology in some kagome magnets, and the combination of symmetry breaking and Mott physics in ‘breathing’ kagome insulators. The Review also highlights open questions in the field and future research directions in kagome systems.more » « less
-
Abstract Neural network quantum states provide a novel representation of the many-body states of interacting quantum systems and open up a promising route to solve frustrated quantum spin models that evade other numerical approaches. Yet its capacity to describe complex magnetic orders with large unit cells has not been demonstrated, and its performance in a rugged energy landscape has been questioned. Here we apply restricted Boltzmann machines (RBMs) and stochastic gradient descent to seek the ground states of a compass spin model on the honeycomb lattice, which unifies the Kitaev model, Ising model and the quantum 120° model with a single tuning parameter. We report calculation results on the variational energy, order parameters and correlation functions. The phase diagram obtained is in good agreement with the predictions of tensor network ansatz, demonstrating the capacity of RBMs in learning the ground states of frustrated quantum spin Hamiltonians. The limitations of the calculation are discussed. A few strategies are outlined to address some of the challenges in machine learning frustrated quantum magnets.more » « less