skip to main content

Search for: All records

Creators/Authors contains: "Templer, Pamela H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Free, publicly-accessible full text available June 10, 2023
  3. Abstract
    To assess relative production of fine roots in droughted and reference plots that are part of the Hubbard Brook DroughtNet study, mesh-free root ingrowth (total depth 20cm) were installed during most study years. Multiple subplots for destructive soil measurements were reserved within plots 7 and 8, and just outside reference plots 1 and 2 in 2015. Fine root production is a component of NPP that is often not well measured in global change experiments. The ingrowth core methodology used may not perfectly represent belowground NPP in the surrounding intact soil, but should provide a reliable metric of relative differences among plots and over time. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.
  4. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial Nmore »export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018)« less
    Free, publicly-accessible full text available April 15, 2023
  5. The authors present a new approach to show how interdisciplinary collaborations among a group of institutions can provide a unique opportunity for students to engage across the science-policy nexus using the framework of the Sustainable Development Goals and the United Nations Framework Convention on Climate Change. Through collaboration across seven higher education institutions in the United States and Australia, virtual student research teams worked together across disciplines.
  6. Abstract
    Climate models for the northeastern United States (U.S.) over the next century predict an increase in air temperature between 2.8 and 4.3 °C and a decrease in the average number of days per year when a snowpack will cover the forest floor (Hayhoe et al. 2007, 2008; Campbell et al. 2010). Studies of forest dynamics in seasonally snow-covered ecosystems have been primarily conducted during the growing season, when most biological activity occurs. However, in recent years considerable progress has been made in our understanding of how winter climate change influences dynamics in these forests. The snowpack insulates soil from below-freezing air temperatures, which facilitates a significant amount of microbial activity. However, a smaller snowpack and increased depth and duration of soil frost amplify losses of dissolved organic C and NO3- in leachate, as well as N2O released into the atmosphere. The increase in nutrient loss following increased soil frost cannot be explained by changes in microbial activity alone. More likely, it is caused by a decrease in plant nutrient uptake following increases in soil frost. We conducted a snow-removal experiment at Hubbard Brook Experimental Forest to determine the effects of a smaller winter snowpack and greater depth and durationMore>>
  7. Abstract
    Root damage, as relative electrolyte leakage, was assessed following winter freeze-thaw cycle experimental treatments in 2014 and 2015 on all Climate Change Across Seasons Experiment (CCASE) plots. Reference (or control) plots are shared with the collaborating Northern Forest DroughtNet experiment. There are six plots total (each 11 x 14m). Two are warmed 5 degrees C throughout the growing season (Plots 3 and 4). Two others are warmed 5 degrees C in the growing season and have snow removed during winter to induce soil freeze/thaw cycles (Plots 5 and 6). Four kilometers (2.5 mi) of heating cable are buried in the soil to warm these four plots. Two additional plots serve as controls for our experiment (Plots 1 and 2). Analysis and results from these data are presented in Sanders-DeMott 2018. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Sanders-DeMott, R., Sorensen, P.O., Reinmann, A.B. et al. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. Biogeochemistry 137,More>>
  8. Abstract
    Fine root nitrogen uptake capacity was measured on excised roots prior to experimental treatment in 2013 and throughout the growing seasons of 2014 and 2015 on all Climate Change Across Seasons Experiment (CCASE) plots. Reference (or control) plots are shared with the collaborating Northern Forest DroughtNet experiment. There are six plots total (each 11 x 14m). Two are warmed 5 degrees C throughout the growing season (Plots 3 and 4). Two others are warmed 5 degrees C in the growing season and have snow removed during winter to induce soil freeze/thaw cycles (Plots 5 and 6). Four kilometers (2.5 mi) of heating cable are buried in the soil to warm these four plots. Two additional plots serve as controls for our experiment (Plots 1 and 2). Analysis and results from these data are presented in Sanders-DeMott 2018. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Sanders-DeMott, R., Sorensen, P.O., Reinmann, A.B. et al. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogenMore>>
  9. Abstract
    Resin available soil solution nitrogen was measured during seasonal incubations in 2014 and 2015 on all Climate Change Across Seasons Experiment (CCASE) plots. Reference (or control) plots are shared with the collaborating Northern Forest DroughtNet experiment. There are six plots total (each 11 x 14m). Two are warmed 5 degrees C throughout the growing season (Plots 3 and 4). Two others are warmed 5 degrees C in the growing season and have snow removed during winter to induce soil freeze/thaw cycles (Plots 5 and 6). Four kilometers (2.5 mi) of heating cable are buried in the soil to warm these four plots. Two additional plots serve as controls for our experiment (Plots 1 and 2). Analysis and results from these data are presented in Sanders-DeMott 2018. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Sanders-DeMott, R., Sorensen, P.O., Reinmann, A.B. et al. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. Biogeochemistry 137, 337–349 (2018). https://doi.org/10.1007/s10533-018-0422-5
  10. Abstract
    Foliage was collected in 2015 and 2017 from red maple trees at the Climate Change Across Seasons Experiment (CCASE) as part of the Hubbard Brook Ecosystem Study (HBES). Analyses of foliar metabolites include polyamines, amino acids, chlorophylls, carotenoids, soluble proteins, soluble inorganic elements, sugars, and total nitrogen and carbon. There are six (11 x 14m) plots in total in this study; two control (plots 1 and 2), two warmed 5 degrees (°) Celsius (C) above ambient throughout the growing season (plots 3 and 4), and two warmed 5 °C in the growing season, with snow removal during the winter to induce soil freezing and then warmed with buried heating cables to create a subsequent thaw (plots 5 and 6). Each soil freeze/thaw cycle includes 72 hours of soil freezing followed by 72 hours of thaw. Four kilometers (km) of heating cable are buried in the soil to warm these four plots. Together, these treatments led to warmer growing season soil temperatures and an increased frequency of soil freeze-thaw cycles (FTCs) in winter. Our goal was to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple trees. These data were gathered asMore>>