skip to main content


Search for: All records

Creators/Authors contains: "Tews, Ingo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The equation of state (EOS) of dense strongly interacting matter can be probed by astrophysical observations of neutron stars (NS), such as X-ray detections of pulsars or the measurement of the tidal deformability of NSs during the inspiral stage of NS mergers. These observations constrain the EOS at most up to the density of the maximum-mass configuration,nTOV, which is the highest density that can be explored by stable NSs for a given EOS. However, under the right circumstances, binary neutron star (BNS) mergers can create a postmerger remnant that explores densities abovenTOV. In this work, we explore whether the EOS abovenTOVcan be measured from gravitational-wave or electromagnetic observations of the postmerger remnant. We perform a total of 25 numerical-relativity simulations of BNS mergers for a range of EOSs and find no case in which different descriptions of the matter abovenTOVhave a detectable impact on postmerger observables. Hence, we conclude that the EOS abovenTOVcan likely not be probed through BNS merger observations for the current and next generation of detectors.

     
    more » « less
  2. Abstract

    The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4Mneutron star to be$$R=11.9{8}_{-0.40}^{+0.35}$$R=11.980.40+0.35km.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Observations of neutron-star mergers with distinct messengers, including gravitational waves and electromagnetic signals, can be used to study the behavior of matter denser than an atomic nucleus and to measure the expansion rate of the Universe as quantified by the Hubble constant. We performed a joint analysis of the gravitational-wave event GW170817 with its electromagnetic counterparts AT2017gfo and GRB170817A, and the gravitational-wave event GW190425, both originating from neutron-star mergers. We combined these with previous measurements of pulsars using x-ray and radio observations, and nuclear-theory computations using chiral effective field theory, to constrain the neutron-star equation of state. We found that the radius of a 1.4–solar mass neutron star is11.750.81+0.86km at 90% confidence and the Hubble constant is66.24.2+4.4at 1σ uncertainty.

     
    more » « less