skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thackeray, C_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite decades of effort to constrain equilibrium climate sensitivity (ECS), current best estimates still exhibit a large spread. Past studies have sought to reduce ECS uncertainty through a variety of methods including emergent constraints. One example uses global temperature variability over the past century to constrain ECS. While this method shows promise, it has been criticized for its susceptibility to the influence of anthropogenic forcing and the limited length of the instrumental record used to compute temperature variability. Here, we investigate the emergent relationship between ECS and two metrics of global temperature variability using model simulations and paleoclimate reconstructions over the last millennium (850–1999). We find empirical evidence in support of these emergent relationships. Observational constraints suggest a central ECS estimate of 2.5–2.7 K, consistent with the Intergovernmental Panel on Climate Change's consensus estimate of 3K. Moreover, they suggest ECS “likely” ranges of 1.7–3.3 K and 1.9–3.5 K. 
    more » « less
  2. Abstract Global climate models (GCMs) are unable to produce detailed runoff conditions at the basin scale. Assumptions are commonly made that dynamical downscaling can resolve this issue. However, given the large magnitude of the biases in downscaled GCMs, it is unclear whether such projections are credible. Here, we use an ensemble of dynamically downscaled GCMs to evaluate this question in the Sierra‐Cascade mountain range of the western US. Future projections across this region are characterized by earlier seasonal shifts in peak flow, but with substantial inter‐model uncertainty (−25 ± 34.75 days, 95% confidence interval (CI)). We apply the emergent constraint (EC) method for the first time to dynamically downscaled projections, leading to a 39% (−28.25 ± 20.75 days, 95% CI) uncertainty reduction in future peak flow timing. While the constrained results can differ from bias corrected projections, the EC is based on GCM biases in historical peak flow timing and has a strong physical underpinning. 
    more » « less