skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Thaler, Jesse"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc>

    By quantifying the distance between two collider events, one can triangulate a metric space and reframe collider data analysis as computational geometry. One popular geometric approach is to first represent events as an energy flow on an idealized celestial sphere and then define the metric in terms of optimal transport in two dimensions. In this paper, we advocate for representing events in terms of a spectral function that encodes pairwise particle angles and products of particle energies, which enables a metric distance defined in terms of one-dimensional optimal transport. This approach has the advantage of automatically incorporating obvious isometries of the data, like rotations about the colliding beam axis. It also facilitates first-principles calculations, since there are simple closed-form expressions for optimal transport in one dimension. Up to isometries and event sets of measure zero, the spectral representation is unique, so the metric on the space of spectral functions is a metric on the space of events. At lowest order in perturbation theory in electron-positron collisions, our metric is simply the summed squared invariant masses of the two event hemispheres. Going to higher orders, we present predictions for the distribution of metric distances between jets in fixed-order and resummed perturbation theory as well as in parton-shower generators. Finally, we speculate on whether the spectral approach could furnish a useful metric on the space of quantum field theories.

    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. A<sc>bstract</sc>

    Jet grooming is an important strategy for analyzing relativistic particle collisions in the presence of contaminating radiation. Most jet grooming techniques introduce hard cutoffs to remove soft radiation, leading to discontinuous behavior and associated experimental and theoretical challenges. In this paper, we introduce Pileup and Infrared Radiation Annihilation (Piranha), a paradigm for continuous jet grooming that overcomes the discontinuity and infrared sensitivity of hard-cutoff grooming procedures. We motivate Piranhafrom the perspective of optimal transport and the Energy Mover’s Distance and review Apollonius Subtraction and Iterated Voronoi Subtraction as examples of Piranha-style grooming. We then introduce a new tree-based implementation of Piranha, Recursive Subtraction, with reduced computational costs. Finally, we demonstrate the performance of Recursive Subtraction in mitigating sensitivity to soft distortions from hadronization and detector effects, and additive contamination from pileup and the underlying event.

    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. A bstract The identification of interesting substructures within jets is an important tool for searching for new physics and probing the Standard Model at colliders. Many of these substructure tools have previously been shown to take the form of optimal transport problems, in particular the Energy Mover’s Distance (EMD). In this work, we show that the EMD is in fact the natural structure for comparing collider events, which accounts for its recent success in understanding event and jet substructure. We then present a Shape Hunting Algorithm using Parameterized Energy Reconstruction (S haper ), which is a general framework for defining and computing shape-based observables. S haper generalizes N -jettiness from point clusters to any extended, parametrizable shape. This is accomplished by efficiently minimizing the EMD between events and parameterized manifolds of energy flows representing idealized shapes, implemented using the dual-potential Sinkhorn approximation of the Wasserstein metric. We show how the geometric language of observables as manifolds can be used to define novel observables with built-in infrared-and-collinear safety. We demonstrate the efficacy of the S haper framework by performing empirical jet substructure studies using several examples of new shape-based observables. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. With the vast data-collecting capabilities of current and future high-energy collider experiments, there is an increasing demand for computationally efficient simulations. Generative machine learning models enable fast event generation, yet so far these approaches are largely constrained to fixed data structures and rigid detector geometries. In this paper, we introduce EPiC-GAN - equivariant point cloud generative adversarial network - which can produce point clouds of variable multiplicity. This flexible framework is based on deep sets and is well suited for simulating sprays of particles called jets. The generator and discriminator utilize multiple EPiC layers with an interpretable global latent vector. Crucially, the EPiC layers do not rely on pairwise information sharing between particles, which leads to a significant speed-up over graph- and transformer-based approaches with more complex relation diagrams. We demonstrate that EPiC-GAN scales well to large particle multiplicities and achieves high generation fidelity on benchmark jet generation tasks.

    more » « less
  6. A bstract Power counting is a systematic strategy for organizing collider observables and their associated theoretical calculations. In this paper, we use power counting to characterize a class of jet substructure observables called energy flow polynomials (EFPs). EFPs provide an overcomplete linear basis for infrared-and-collinear safe jet observables, but it is known that in practice, a small subset of EFPs is often sufficient for specific jet analysis tasks. By applying power counting arguments, we obtain linear relationships between EFPs that hold for quark and gluon jets to a specific order in the power counting. We test these relations in the parton shower generator Pythia, finding excellent agreement. Power counting allows us to truncate the basis of EFPs without affecting performance, which we corroborate through a study of quark-gluon tagging and regression. 
    more » « less