- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Tessaro, Stefano (2)
-
Thiruvengadam, Aishwarya (2)
-
Hoang, Viet Tung (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hoang, Viet Tung; Tessaro, Stefano; Thiruvengadam, Aishwarya (, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security)Multi-user (mu) security considers large-scale attackers (e.g., state actors) that given access to a number of sessions, attempt to compromise at least one of them. Mu security of authenticated encryption (AE) was explicitly considered in the development of TLS 1.3. This paper revisits the mu security of GCM, which remains to date the most widely used dedicated AE mode. We provide new concrete security bounds which improve upon previous work by adopting a refined parameterization of adversarial resources that highlights the impact on security of (1) nonce re-use across users and of (2) re-keying. As one of the main applications, we give tight security bounds for the nonce-randomization mechanism adopted in the record protocol of TLS 1.3 as a mitigation of large-scale multi-user attacks. We provide tight security bounds that yield the first validation of this method. In particular, we solve the main open question of Bellare and Tackmann (CRYPTO ’16), who only considered restricted attackers which do not attempt to violate integrity, and only gave non-tight bounds.more » « less
An official website of the United States government

Full Text Available