skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Multi-user Security of GCM, Revisited: Tight Bounds for Nonce Randomization
Multi-user (mu) security considers large-scale attackers (e.g., state actors) that given access to a number of sessions, attempt to compromise at least one of them. Mu security of authenticated encryption (AE) was explicitly considered in the development of TLS 1.3. This paper revisits the mu security of GCM, which remains to date the most widely used dedicated AE mode. We provide new concrete security bounds which improve upon previous work by adopting a refined parameterization of adversarial resources that highlights the impact on security of (1) nonce re-use across users and of (2) re-keying. As one of the main applications, we give tight security bounds for the nonce-randomization mechanism adopted in the record protocol of TLS 1.3 as a mitigation of large-scale multi-user attacks. We provide tight security bounds that yield the first validation of this method. In particular, we solve the main open question of Bellare and Tackmann (CRYPTO ’16), who only considered restricted attackers which do not attempt to violate integrity, and only gave non-tight bounds.  more » « less
Award ID(s):
1755539
PAR ID:
10082775
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
Page Range / eLocation ID:
1429 to 1440
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the multi-user with corruptions (muc) setting there are n users, and the goal is to prove that, even in the face of an adversary that adaptively corrupts users to expose their keys, un-corrupted users retain security. This can be considered for many primitives including signatures and encryption. Proofs of muc security, while possible, generally suffer a factor n loss in tightness, which can be large. This paper gives new proofs where this factor is reduced to the number c of corruptions, which in practice is much smaller than n. We refer to this as corruption-parametrized muc (cp-muc) security. We give a general result showing it for a class of games that we call local. We apply this to get cp-muc security for signature schemes (including ones in standards and in TLS 1.3) and some forms of public-key and symmetric encryption. Then we give dedicated cp-muc security proofs for some important schemes whose underlying games are not local, including the Hashed ElGamal and Fujisaki-Okamoto KEMs and authenticated key exchange. Finally, we give negative results to show optimality of our bounds. 
    more » « less
  2. This paper provides efficient authenticated-encryption (AE) schemes in which a ciphertext is a commitment to the key. These are extended, at minimal additional cost, to schemes where the ciphertext is a commitment to all encryption inputs, meaning key, nonce, associated data and message. Our primary schemes are modifications of GCM (for basic, unique-nonce AE security) and AES-GCM-SIV (for misuse-resistant AE security) and add both forms of commitment without any increase in ciphertext size. We also give more generic, but somewhat more costly, solutions. 
    more » « less
  3. We give a framework for relating the concrete security of a “reference” protocol (say, one appearing in an academic paper) to that of some derived, “real” protocol (say, appearing in a cryptographic standard). It is based on the indifferentiability framework of Maurer, Renner, and Holenstein (MRH), whose application has been exclusively focused upon non-interactive cryptographic primitives, e.g., hash functions and Feistel networks. Our extension of MRH is supported by a clearly defined execution model and two composition lemmata, all formalized in a modern pseudocode language. Together, these allow for precise statements about game-based security properties of cryptographic objects (interactive ornot) at various levels of abstraction. As a real-world application, we design and prove tight security bounds for a potential TLS 1.3 extension that integrates the SPAKE2 password-authenticated key-exchange into the handshake. 
    more » « less
  4. Atluri, Vijayalakshmi; Di Pietro, Roberto; Jensen, Christian D.; Meng, Weizhi (Ed.)
    We provide a strong definition for committing authenticated- encryption (cAE), as well as a framework that encompasses earlier and weaker definitions. The framework attends not only to what is committed but also the extent to which the adversary knows or controls keys. We slot into our framework strengthened cAE-attacks on GCM and OCB. Our main result is a simple and efficient construction, CTX, that makes a nonce-based AE (nAE) scheme committing. The transformed scheme achieves the strongest security notion in our framework. Just the same, the added computational cost (on top of the nAE scheme’s cost) is a single hash over a short string, a cost independent of the plaintext’s length. And there is no increase in ciphertext length compared to the base nAE scheme. That such a thing is possible, let alone easy, upends the (incorrect) intuition that you can’t commit to a plaintext or ciphertext without hashing one or the other. And it motivates a simple and practical tweak to AE-schemes to make them committing. 
    more » « less
  5. Handschuh, Helena; Lysyanskaya, Anna (Ed.)
    In Internet security protocols including TLS 1.3, KEMTLS, MLS and Noise, HMAC is being assumed to be a dual-PRF, meaning a PRF not only when keyed conventionally (through its first input), but also when "swapped'' and keyed (unconventionally) through its second (message) input. We give the first in-depth analysis of the dual-PRF assumption on HMAC. For the swap case, we note that security does not hold in general, but completely characterize when it does; we show that HMAC is swap-PRF secure if and only if keys are restricted to sets satisfying a condition called feasibility, that we give, and that holds in applications. The sufficiency is shown by proof and the necessity by attacks. For the conventional PRF case, we fill a gap in the literature by proving PRF security of HMAC for keys of arbitrary length. Our proofs are in the standard model, make assumptions only on the compression function underlying the hash function, and give good bounds in the multi user setting. The positive results are strengthened through achieving a new notion of variable key-length PRF security that guarantees security even if different users use keys of different lengths, as happens in practice. 
    more » « less