skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thomas, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A strip of square stamps can be folded in many ways such that all of the stamps are stacked in a single pile in the folded state. The stamp folding problem asks for the number of such foldings and has previously been studied extensively. We consider this problem with the additional restriction of fixing the mountain-valley assignment of each crease in the stamp pattern. We provide a closed form for counting the number of legal foldings on specific patterns of mountain-valley assignments, including a surprising appearance of the Catalan numbers. We describe results on upper and lower bounds for the number of ways to fold a given mountain-valley assignment on the strip of stamps, provide experimental evidence suggesting more general results, and include conjectures and open problems. Journal version 
    more » « less
    Free, publicly-accessible full text available October 8, 2026
  2. Free, publicly-accessible full text available May 4, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. Free, publicly-accessible full text available August 27, 2026
  5. We consider a bilevel network interdiction problem where the follower aims to maximize the amount of flow from the source node to the sink node, and the leader aims to minimize the number of arcs from a critical set that have positive flow on them, that is, active arcs, in the maximum flow solution obtained by the follower. This problem is motivated by an application in human trafficking disruption. We consider both the optimistic and pessimistic variants of this bilevel optimization problem and develop their respective single-level reformulations. We present a tailored solution method to the pessimistic problem, which solves the problem to optimality for one practically important class of networks. Through computational experiments on randomly generated layered network instances, we show the effectiveness of the proposed methods and demonstrate that the tailored method is orders of magnitude faster than existing approaches in the literature. We also conduct computational experiments on randomly generated test instances inspired by domestic human trafficking networks and draw domain-specific insights. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026
  6. Abstract The blue loop stage of intermediate mass stars has been called a “magnifying glass”, where even seemingly small effects in prior stages of evolution, as well as assumptions about stellar composition, rotation, and convection, produce discernible changes. As such, blue loops, and especially the existence and properties of Cepheids, can serve as a laboratory where feebly connected Beyond Standard Model particles such as axions can be gainfully studied. We undertake a careful study of the effects of these putative particles on the blue loop, paying close attention to the evolution of the core potential and the hydrogen profile. Our simulations, performed withMESA, place bounds on the axion-photon coupling using the galactic Cepheid S Mus, with dynamically-determined mass of 6M, as a benchmark. The effects of varying convective overshoot on the core potential and hydrogen profile, and the ensuing changes in the axion constraints, are carefully studied. Along the way, we explore the “mirror principle” induced by the hydrogen burning shell and contrast our results with those existing in the literature. Less conservative (but more stringent) bounds on the axion-photon coupling are given for a 9Mmodel, which is the heaviest that can be simulated if overshoot is incorporated, and tentative projections are given for a 12Mmodel, which is approximately the heaviest tail of the mass distribution of galactic Cepheids determined by pulsation models using Gaia DR2. Our main message is that the reliable simulation and observation (ideally, through dynamical mass determination) of massive Cepheids constitutes an important frontier in axion searches, challenges in modeling uncertainties in the microphysics of the blue loop stage notwithstanding. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  7. Free, publicly-accessible full text available March 1, 2026
  8. Abstract The Sc2.0 global consortium to design and construct a synthetic genome based on theSaccharomyces cerevisiaegenome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp syntheticSaccharomyces cerevisiaechromosomesynXVIof the Sc2.0 project. Application of the CRISPR D-BUGS protocol identified defective loci, which were modified to improve sporulation and recover wild-type like growth when grown on glycerol as a sole carbon source when grown at 37˚C. LoxPsym sites inserted downstream of dubious open reading frames impacted the 5’ UTR of genes required for optimal growth and were identified as a systematic cause of defective growth. Based on lessons learned from analysis of Sc2.0 defects andsynXVI, anin-silicoredesign of thesynXVIchromosome was performed, which can be used as a blueprint for future synthetic yeast genome designs. Thein-silicoredesign ofsynXVIincludes reduced PCR tag frequency, modified chunk and megachunk termini, and adjustments to allocation of loxPsym sites and TAA stop codons to dubious ORFs. This redesign provides a roadmap into applications of Sc2.0 strategies in non-yeast organisms. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  9. Water quality monitoring is essential for identifying risks to environmental and human health. Nitrate monitoring is of particular importance, as its anthropogenic point and nonpoint sources are common globally and have deleterious effects on water quality and usability as well as aquatic ecosystem health. Standard methods for assessing nitrate concentrations in water generally involve laboratory techniques, as methods available for field testing face significant tradeoffs between cost, precision, and portability. Given its relatively ubiquitous nature and the widespread regulation of nitrate pollution, it is a prime target for sensor development. The growing field of nanomaterials (e.g., nanoparticles, nanotubes, and 2-dimensional materials) offers the potential to eliminate these tradeoffs through a new generation of field-ready nitrate sensors. However, transitioning nano-sensors from the lab to the field remains challenging. In this perspective we examine the challenges of lab-to-field transition of nano-sensors for nitrate, highlighting the importance of a user-centered design approach under the framework of FOCUS (form factor, operational robustness, cost, user interface, and sensitivity). 
    more » « less
    Free, publicly-accessible full text available February 21, 2026