Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Abstract In wildfire-prone coastal Santa Barbara, California, downslope winds observed on the southern slopes of the east-west oriented Santa Ynez Mountains are known as Sundowner winds (or Sundowners). One important feature of Sundowners is the remarkable spatial and temporal variability in lee slope jet characteristics. Besides the intensity of the flow approaching the mountain range, the acceleration of the lee slope jet can be influenced by reflected gravity waves associated with one or more of the following mechanisms: a self-induced critical level, an inversion close to mountaintop, and the presence of a mean-state critical level (MSCL). The relative contribution of these mechanisms to the enhancement of Sundowners is yet unknown. This study uses 32-yr simulations (hourly, 1-km grid spacing) complemented with observations collected during the Sundowner Winds Experiment (SWEX) to better quantify the relative contribution of these mechanisms and to quantify the importance of MSCLs. We show that when an MSCL is present below 5 km, less atmospheric forcing is necessary to attain similar lee-slope jet strengths compared to when MSCLs are absent or above 5 km. This was evidenced from simulations and verified with observations. Although MSCLs during Sundowners occur year-round, their relative frequency increases in summer, when temperatures are high and fuels are dry, enhancing wildfire risk. Properly identifying these processes contributes to improved understanding and predictability of Sundowners and many other hazardous downslope windstorms in coastal environments.more » « lessFree, publicly-accessible full text available December 27, 2025
-
Surface winds over California can compound fire risk during autumn, yet their long-term trends in the face of decadal warming are less clear compared to other climate variables like temperature, drought, and snowmelt. To determine where and how surface winds are changing most, this article uses multiple reanalyses and Remote Automated Weather Stations (RAWS) to calculate autumn 10 m wind speed trends during 1979–2020. Reanalysis trends show statistically significant increases in autumn night-time easterlies on the western slopes of the Sierra Nevada. Although downslope windstorms are frequent to this region, trends instead appear to result from elevated gradients in warming between California and the interior continent. The result is a sharper horizontal temperature gradient over the Sierra crest and adjacent free atmosphere above the foothills, strengthening the climatological nocturnal katabatic wind. While RAWS records show broad agreement, their trend is likely influenced by year-to-year changes in the number of observations.more » « less
-
Abstract Coastal Santa Barbara is among the most exposed communities to wildfire hazards in Southern California. Downslope, dry, and gusty windstorms are frequently observed on the south-facing slopes of the Santa Ynez Mountains that separate the Pacific Ocean from the Santa Ynez valley. These winds, known as “Sundowners,” peak after sunset and are strong throughout the night and early morning. The Sundowner Winds Experiment (SWEX) was a field campaign funded by the National Science Foundation that took place in Santa Barbara, California, between 1 April and 15 May 2022. It was a collaborative effort of 10 institutions to advance understanding and predictability of Sundowners, while providing rich datasets for developing new theories of downslope windstorms in coastal environments with similar geographic and climatic characteristics. Sundowner spatiotemporal characteristics are controlled by complex interactions among atmospheric processes occurring upstream (Santa Ynez valley), and downstream due to the influence of a cool and stable marine boundary layer. SWEX was designed to enhance spatial measurements to resolve local circulations and vertical structure from the surface to the midtroposphere and from the Santa Barbara Channel to the Santa Ynez valley. This article discusses how SWEX brought cutting-edge science and the strengths of multiple ground-based and mobile instrument platforms to bear on this important problem. Among them are flux towers, mobile and stationary lidars, wind profilers, ceilometers, radiosondes, and an aircraft equipped with three lidars and a dropsonde system. The unique features observed during SWEX using this network of sophisticated instruments are discussed here.more » « less
-
Massive wildfires and extreme fire behavior are becoming more frequent across the western United States, creating a need to better understand how megafire behavior will evolve in our warming world. Here, the fire spread model Prometheus is used to simulate the initial explosive growth of the 2020 August Complex, which occurred in northern California (CA) mixed conifer forests. High temperatures, low relative humidity, and daytime southerly winds were all highly correlated with extreme rates of modeled spread. Fine fuels reached very dry levels, which accelerated simulation growth and heightened fire heat release (HR). Model sensitivity tests indicate that fire growth and HR are most sensitive to aridity and fuel moisture content. Despite the impressive early observed growth of the fire, shifting the simulation ignition to a very dry September 2020 heatwave predicted a >50% increase in growth and HR, as well as increased nighttime fire activity. Detailed model analyses of how extreme fire behavior develops can help fire personnel prepare for problematic ignitions.more » « less
-
Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during downslope wind-driven fires even though various fuel treatments are conducted across the western United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity on the downstream edge of the fuel break. However, fuel break width mattered. We found that the lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the time of ignition influenced fire behavior and efficacy of management interventions.more » « less
An official website of the United States government
