skip to main content

Title: Simulating Potential Impacts of Fuel Treatments on Fire Behavior and Evacuation Time of the 2018 Camp Fire in Northern California
Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during downslope wind-driven fires even though various fuel treatments are conducted across the western United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity on the downstream edge of the fuel break. However, fuel break width mattered. We found that the lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the time more » of ignition influenced fire behavior and efficacy of management interventions. « less
; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Firebrands are known to be able to ignite not only vegetation but also various structures found in wildland-urban interface (WUI) area. Especially, firebrands located close to each other on a combustible substrate increase the likelihood of ignition and the subsequent fire. To elucidate the ignition mechanism of firebrands, experiments are performed using a 3 by 3 square array of flaming firebrands deposited on a 6.35 mm thick birch plywood. The spacing of the firebrand is varied in each experiment, ranging from 10 to 30 mm. The deposited mass of firebrands lies between 13 and 15 g. Ambient wind is imposed parallel to the plywood surface to investigate its effect on the ignition and the subsequent flame spread over the fuel. Three different wind speeds 0, 0.5, and 0.75 m/s are tested. During the experiments, mass loss of the plywood and the deposited firebrands is recorded. Video cameras are used to monitor the burning process. An infrared camera is also used to monitor the temperature of the firebrands and the plywood. The experiment results indicate that the firebrands with the spacing greater than 20 mm are able to burn only the surface of the plywood until the firebrands burn out. Whenmore »the spacing between firebrands is smaller than 20 mm, the plywood is ignited and continues to burn even after the firebrands are fully consumed. It is also observed that the flame is able to spread downstream at 10 mm spacing under ambient wind speed of 0.5 m/s. Results from this study demonstrate the significant influence of spacing between the firebrands on the ignition and the burning behavior of the substrate materials.« less
  2. Viegas, Domingos Xavier (Ed.)
    In this paper, we present an integrated wildland fire forecasting system based on combining a high resolution, multi-scale weather forecasting model, with a semi-empirical fire spread model and a prognostic dead fuel moisture model. The fire-released heat and moisture impact local meteorology which in turn drives the fire propagation and the dead fuel moisture. The prognostic dead fuel moisture model renders the diurnal and spatial fuel moisture variability. The local wind and the fuel moisture variation drive the fire propagation over the landscape. The sub-kilometer model resolution enables detailed representation of complex terrain and small-scale variability in surface properties. The fuel moisture model assimilates surface observations of the 10h fuel moisture from Remote Automated Weather Stations (RAWS) and generates spatial fuel moisture maps used for the fire spread computations. The dead fuel moisture is traced in three different fuel classes (1h, 10h and 100h fuel), which are integrated at any given location based on the local fuel description, to provide the total dead fuel moisture content at the fire-model grid, of a typical resolution of tens of meters. The fire simulations are initialized by a web-based control system allowing a user to define the fire anywhere in CONUS as wellmore »as basic simulation properties, such as simulation length, resolution, and type of meteorological forcing for any time meteorological products are available to initialize the weather model. The data is downloaded automatically, and the system monitors execution on a cluster. The simulation results are processed while the model is running and displayed as animations on a dedicated visualization portal.« less
  3. The November 2018 Camp Fire quickly became the deadliest and most destructive wildfire in California history. In this case study, we investigate the contribution of meteorological conditions and, in particular, a downslope windstorm that occurred during the 2018 Camp Fire. Dry seasonal conditions prior to ignition led to 100-h fuel moisture contents in the region to reach record low levels. Meteorological observations were primarily made from a number of remote automatic weather stations and a mobile scanning Doppler lidar deployed to the fire on 8 November 2018. Additionally, gridded operational forecast models and high-resolution meteorological simulations were synthesized in the analysis to provide context for the meteorological observations and structure of the downslope windstorm. Results show that this event was associated with mid-level anti-cyclonic Rossby wave breaking likely caused by cold air advection aloft. An inverted surface trough over central California created a pressure gradient which likely enhanced the downslope winds. Sustained surface winds between 3–6 m s−1 were observed with gusts of over 25 m s−1 while winds above the surface were associated with an intermittent low-level jet. The meteorological conditions of the event were well forecasted, and the severity of the fire was not surprising given the firemore »danger potential for that day. However, use of surface networks alone do not provide adequate observations for understanding downslope windstorm events and their impact on fire spread. Fire management operations may benefit from the use of operational wind profilers to better understand the evolution of downslope windstorms and other fire weather phenomena that are poorly understood and observed.« less
  4. Abstract Numerical simulations were conducted to investigate the upstream environment’s impacts on the airflow over the lee slope of the Cuyamaca Mountains (CM) near San Diego, California, during the Cedar Fire that occurred from 25 to 29 October 2003. The upstream environment was largely controlled by a southwest–northeast-oriented upper-tropospheric jet streak that rotated around a positively tilted ridge within the polar jet stream. Three sequential dynamical processes were found to be responsible for modifying the mesoscale environment conducive to low-level momentum and dry air that sustained the Cedar Fire. First, the sinking motion associated with the indirect circulation of the jet streak’s exit region strengthened the midtropospheric flow over the southern Rockies and the lee slope of the Sawatch and San Juan Ranges, thus modestly affecting the airflow by enhancing the downslope wind over the CM. Second, consistent with the coupling process between the upper-level sinking motion, downward momentum transfer, and developing lower-layer mountain waves, a wave-induced critical level over the mountain produced wave breaking, which was characterized by a strong turbulent mixed region with a wind reversal on top of it. This critical level helped to produce severe downslope winds leading to the third stage: a hydraulic jump thatmore »subsequently enhanced the downstream extent of the strong winds conducive to the favorable lower-tropospheric environment for rapid fire spread. Consistent with these findings was the deep-layer resonance between the mountain surface and tropopause, which had a strong impact on strengthening the severe downslope winds over the lee slope of the CM accompanying the elevated strong easterly jet at low levels.« less
  5. The impacts of wildfires along the wildland urban interface (WUI) on atmospheric particulate concentrations and composition are an understudied source of air pollution exposure. To assess the residual impacts of the 2021 Marshall Fire (Colorado), a wildfire that predominantly burned homes and other human-made materials, on homes within the fire perimeter that escaped the fire, we performed a combination of fine particulate matter (PM2.5) filter sampling and chemical analysis, indoor dust collection and chemical analysis, community scale PurpleAir PM2.5 analysis, and indoor particle number concentration measurements. Following the fire, the chemical speciation of dust collected in smoke-affected homes in the burned zone showed elevated concentrations of the biomass burning marker levoglucosan (medianlevo = 4147 ng g−1), EPA priority toxic polycyclic aromatic hydrocarbons (median Σ16PAH = 1859.3 ng g−1), and metals (median Σ20Metals = 34.6 mg g−1) when compared to samples collected in homes outside of the burn zone 6 months after the fire. As indoor dust particles are often resuspended and can become airborne, the enhanced concentration of hazardous metals and organics within dust samples may pose a threat to human health. Indoor airborne particulate organic carbon (median = 1.91 μg m−3), particulate elemental carbon (median = .02 μg m−3),more »and quantified semi-volatile organic species in PM2.5 were found in concentrations comparable to ambient air in urban areas across the USA. Particle number and size distribution analysis at a heavily instrumented supersite home located immediately next to the burned area showed indoor particulates in low concentrations (below 10 μg m−3) across various sizes of PM (12 nm–20 μm), but were elevated by resuspension from human activity, including cleaning.« less