skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thompson, Marten"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a new semiparametric extension of the Fay-Herriot model, termed the agnostic Fay-Herriot model (AGFH), in which the sampling-level model is expressed in terms of an unknown general function [Formula: see text]. Thus, the AGFH model can express any distribution in the sampling model since the choice of [Formula: see text] is extremely broad. We propose a Bayesian modelling scheme for AGFH where the unknown function [Formula: see text] is assigned a Gaussian Process prior. Using a Metropolis within Gibbs sampling Markov Chain Monte Carlo scheme, we study the performance of the AGFH model, along with that of a hierarchical Bayesian extension of the Fay-Herriot model. Our analysis shows that the AGFH is an excellent modelling alternative when the sampling distribution is non-Normal, especially in the case where the sampling distribution is bounded. It is also the best choice when the sampling variance is high. However, the hierarchical Bayesian framework and the traditional empirical Bayesian framework can be good modelling alternatives when the signal-to-noise ratio is high, and there are computational constraints. AMS subject classification: 62D05; 62F15 
    more » « less
  2. Abstract Simulations of future climate contain variability arising from a number of sources, including internal stochasticity and external forcings. However, to the best of our abilities climate models and the true observed climate depend on the same underlying physical processes. In this paper, we simultaneously study the outputs of multiple climate simulation models and observed data, and we seek to leverage their mean structure as well as interdependencies that may reflect the climate’s response to shared forcings. Bayesian modeling provides a fruitful ground for the nuanced combination of multiple climate simulations. We introduce one such approach whereby a Gaussian process is used to represent a mean function common to all simulated and observed climates. Dependent random effects encode possible information contained within and between the plurality of climate model outputs and observed climate data. We propose an empirical Bayes approach to analyze such models in a computationally efficient way. This methodology is amenable to the CMIP6 model ensemble, and we demonstrate its efficacy at forecasting global average near-surface air temperature. Results suggest that this model and the extensions it engenders may provide value to climate prediction and uncertainty quantification. 
    more » « less
  3. We present an overview of four challenging research areas in multiscale physics and engineering as well as four data science topics that may be developed for addressing these challenges. We focus on multiscale spatiotemporal problems in light of the importance of understanding the accompanying scientific processes and engineering ideas, where “multiscale” refers to concurrent, non-trivial and coupled models over scales separated by orders of magnitude in either space, time, energy, momenta, or any other relevant parameter. Specifically, we consider problems where the data may be obtained at various resolutions; analyzing such data and constructing coupled models led to open research questions in various applications of data science. Numeric studies are reported for one of the data science techniques discussed here for illustration, namely, on approximate Bayesian computations. 
    more » « less