skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thompson, Ward H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The temperature dependence of spectra can reveal important insights into the structural and dynamical behavior of the system being probed. In the case of linear spectra, this has been exploited to investigate the thermodynamic driving forces governing the spectral response. Indeed, the temperature derivative of a spectrum can be used to obtain effective energetic and entropic profiles as a function of the measured frequency. The former can further be used to predict the temperature-dependent spectrum via a van’t Hoff relation. However, these approaches are not directly applicable to nonlinear, complex-valued spectra, such as vibrational sum-frequency generation (SFG) or two-dimensional infrared (2D-IR) photon echo spectra. Here, we show how the energetic and entropic driving forces governing such nonlinear spectra can be determined and used within a generalized van’t Hoff relation to predict their temperature dependence. The central idea is to allow the underlying energetic profiles to themselves be complex-valued. We illustrate this approach for 2D-IR spectra of water and SFG spectra of the air–water interface and demonstrate the accuracy of the generalized van’t Hoff relationship and its implications for the origin of temperature-dependent spectral changes. 
    more » « less
    Free, publicly-accessible full text available August 14, 2025
  2. Free, publicly-accessible full text available May 16, 2025
  3. It has long been understood that the structural features of water are determined by hydrogen bonding (H-bonding) and that the exchange of, or "jumps" between, H-bond partners underlies many of the dynamical processes in water. Despite the importance of H-bond exchanges there is, as yet, no direct method for experimentally measuring the timescale of the process or its associated activation energy. Here, we identify and exploit relationships between water's structural and dynamical properties that provide an indirect route for determining the H-bond exchange activation energy from experimental data. Specifically, we show that the enthalpy and entropy determining the radial distribution function in liquid water are linearly correlated with the activation energies for H-bond jumps, OH reorientation, and diffusion. Using temperature-dependent measurements of the radial distribution function from the literature, we demonstrate how these correlations allow us to infer the value of the jump activation energy, Ea,0, from experimental results. This analysis gives Ea,0 = 3.43 kcal/mol, which is in good agreement with that predicted by the TIP4P/2005 water model. We also illustrate other approaches for estimating this activation energy consistent with these estimates.. 
    more » « less
  4. The one-step, two-electron reversible reduction of the 6,6′-biazulenic scaffold functionalized along its molecular axis is quantitatively tunable within a wide range of potentials. 
    more » « less
    Free, publicly-accessible full text available May 9, 2025
  5. A large number of force fields have been proposed for describing the behavior of liquid water within classical atomistic simulations, particularly molecular dynamics. In the past two decades, models that incorporate molecular polarizability and even charge transfer have become more prevalent, in attempts to develop more accurate descriptions. These are frequently parameterized to reproduce the measured thermodynamics, phase behavior, and structure of water. On the other hand, the dynamics of water is rarely considered in the construction of these models, despite its importance in their ultimate applications. In this paper, we explore the structure and dynamics of polarizable and charge-transfer water models, with a focus on timescales that directly or indirectly relate to hydrogen bond (H-bond) making and breaking. Moreover, we use the recently developed fluctuation theory for dynamics to determine the temperature dependence of these properties to shed light on the driving forces. This approach provides key insight into the timescale activation energies through a rigorous decomposition into contributions from the different interactions, including polarization and charge transfer. The results show that charge transfer effects have a negligible effect on the activation energies. Furthermore, the same tension between electrostatic and van der Waals interactions that is found in fixed-charge water models also governs the behavior of polarizable models. The models are found to involve significant energy–entropy compensation, pointing to the importance of developing water models that accurately describe the temperature dependence of water structure and dynamics. 
    more » « less