A method for directly calculating the temperature derivative of two-dimensional infrared (2D-IR) spectra from simulations at a single temperature is presented. The approach is demonstrated by application to the OD stretching spectrum of isotopically dilute aqueous (HOD in H 2 O) solutions of urea as a function of concentration. Urea is an important osmolyte because of its ability to denature proteins, which has motivated significant interest in its effect on the structure and dynamics of water. The present results show that the temperature dependence of both the linear IR and 2D-IR spectra, which report on the underlying energetic driving forces, is more sensitive to urea concentration than the spectra themselves. Additional physical insight is provided by calculation of the contributions to the temperature derivative from different interactions, e.g., water–water, water–urea, and urea–urea, present in the system. Finally, it is demonstrated how 2D-IR spectra at other temperatures can be obtained from only room temperature simulations.
more »
« less
A generalized van’t Hoff relation for the temperature dependence of complex-valued nonlinear spectra
The temperature dependence of spectra can reveal important insights into the structural and dynamical behavior of the system being probed. In the case of linear spectra, this has been exploited to investigate the thermodynamic driving forces governing the spectral response. Indeed, the temperature derivative of a spectrum can be used to obtain effective energetic and entropic profiles as a function of the measured frequency. The former can further be used to predict the temperature-dependent spectrum via a van’t Hoff relation. However, these approaches are not directly applicable to nonlinear, complex-valued spectra, such as vibrational sum-frequency generation (SFG) or two-dimensional infrared (2D-IR) photon echo spectra. Here, we show how the energetic and entropic driving forces governing such nonlinear spectra can be determined and used within a generalized van’t Hoff relation to predict their temperature dependence. The central idea is to allow the underlying energetic profiles to themselves be complex-valued. We illustrate this approach for 2D-IR spectra of water and SFG spectra of the air–water interface and demonstrate the accuracy of the generalized van’t Hoff relationship and its implications for the origin of temperature-dependent spectral changes.
more »
« less
- PAR ID:
- 10562770
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 161
- Issue:
- 6
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 064114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chirality-selective vibrational sum frequency generation (chiral SFG) spectroscopy has emerged as a powerful technique for the study of biomolecular hydration water due to its sensitivity to the induced chirality of the first hydration shell. Thus far, water O–H vibrational bands in phase-resolved heterodyne chiral SFG spectra have been fit using one Lorentzian function per vibrational band, and the resulting fit has been used to infer the underlying frequency distribution. Here, we show that this approach may not correctly reveal the structure and dynamics of hydration water. Our analysis illustrates that the chiral SFG responses of symmetric and asymmetric O–H stretch modes of water have opposite phase and equal magnitude and are separated in energy by intramolecular vibrational coupling and a heterogeneous environment. The sum of the symmetric and asymmetric responses implies that an O–H stretch in a heterodyne chiral SFG spectrum should appear as two peaks with opposite phase and equal amplitude. Using pairs of Lorentzian functions to fit water O–H stretch vibrational bands, we improve spectral fitting of previously acquired experimental spectra of model β-sheet proteins and reduce the number of free parameters. The fitting allows us to estimate the vibrational frequency distribution and thus reveals the molecular interactions of water in hydration shells of biomolecules directly from chiral SFG spectra.more » « less
-
Abstract By eliminating unnecessary details, coarse-grained (CG) models provide the necessary efficiency for simulating scales that are inaccessible to higher resolution models. However, because they average over atomic details, the effective potentials governing CG degrees of freedom necessarily incorporate significant entropic contributions, which limit their transferability and complicate the treatment of thermodynamic properties. This work employs a dual-potential approach to consider the energetic and entropic contributions to effective interaction potentials for CG models. Specifically, we consider one- and three-site CG models for ortho-terphenyl (OTP) both above and below its glass transition. We employ the multiscale coarse-graining (MS-CG) variational principle to determine interaction potentials that accurately reproduce the structural properties of an all-atom (AA) model for OTP at each state point. We employ an energy-matching variational principle to determine an energy operator that accurately reproduces the intra- and inter-molecular energy of the AA model. While the MS-CG pair potentials are almost purely repulsive, the corresponding pair energy functions feature a pronounced minima that corresponds to contacting benzene rings. These energetic functions then determine an estimate for the entropic component of the MS-CG interaction potentials. These entropic functions accurately predict the MS-CG pair potentials across a wide range of liquid state points at constant density. Moreover, the entropic functions also predict pair potentials that quite accurately model the AA pair structure below the glass transition. Thus, the dual-potential approach appears a promising approach for modeling AA energetics, as well as for predicting the temperature-dependence of CG effective potentials.more » « less
-
Thiocyanates, nitriles, and azides represent a versatile set of vibrational probes to measure the structure and dynamics in biological systems. The probes are minimally perturbative, the nitrile stretching mode appears in an otherwise uncongested spectral region, and the spectra report on the local environment around the probe. Nitrile frequencies and lineshapes, however, are difficult to interpret, and theoretical models that connect local environments with vibrational frequencies are often necessary. However, the development of both more accurate and intuitive models remains a challenge for the community. The present work provides an experimentally consistent collection of experimental measurements, including IR absorption and ultrafast two-dimensional infrared (2D IR) spectra, to serve as a benchmark in the development of future models. Specifically, we catalog spectra of the nitrile stretching mode of methyl thiocyanate (MeSCN) in fourteen different solvents, including non-polar, polar, and protic solvents. Absorption spectra indicate that π-interactions may be responsible for the line shape differences observed between aromatic and aliphatic alcohols. We also demonstrate that a recent Kamlet–Taft formulation describes the center frequency MeSCN. Furthermore, we report cryogenic infrared spectra that may lead to insights into the peak asymmetry in aprotic solvents. 2D IR spectra measured in protic solvents serve to connect hydrogen bonding with static inhomogeneity. We expect that these insights, along with the publicly available dataset, will be useful to continue advancing future models capable of quantitatively describing the relation between local environments, line shapes, and dynamics in nitrile probes.more » « less
-
A generalized approach derived from Bloch's equation of motion of nuclear magnetic moments is presented to model the frequency, magnetic field, spin density, and temperature dependencies in the electromagnetic permeability tensor for materials with magnetic resonances. The resulting tensor model predicts characteristic polarization signatures which can be observed, for example, in Mueller matrix element spectra measured. When augmented with thermodynamic considerations and suitable Hamiltonian description of the magnetic eigenvalue spectrum, important parameters such as density, spectral amplitude distribution, relaxation time constants, and geometrical orientation parameters of the magnetic moments can be obtained from comparing the generalized model approach to experimental data. We demonstrate our approach by comparing model calculations with full Mueller matrix element spectra measured at an oblique angle of incidence in the terahertz spectral range, across electron spin resonance quintuplet transitions observed in wurtzite-structure GaN doped with iron. Our model correctly predicts the complexity of the polarization signatures observed in the 15 independent elements of the normalized Mueller matrix for both positive and negative magnetic fields and will become useful for future analysis of frequency and magnetic field-dependent magnetic resonance measurements. Published by the American Physical Society2024more » « less
An official website of the United States government

