skip to main content

Search for: All records

Creators/Authors contains: "Tian, Bozhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Free, publicly-accessible full text available May 26, 2023
  3. Free, publicly-accessible full text available October 24, 2023
  4. Bioelectrical interfaces that bridge biotic and abiotic systems have heightened the ability to monitor, understand, and manipulate biological systems and are catalyzing profound progress in neuroscience research, treatments for heart failure, and microbial energy systems. With advances in nanotechnology, bifunctional and high-density devices with tailored structural designs are being developed to enable multiplexed recording or stimulation across multiple spatial and temporal scales with resolution down to millisecond–nanometer interfaces, enabling efficient and effective communication with intracellular electrical activities in a relatively noninvasive and biocompatible manner. This review provides an overview of how biological systems guide the design, engineering, and implementation of bioelectrical interfaces for biomedical applications. We investigate recent advances in bioelectrical interfaces for applications in nervous, cardiac, and microbial systems, and we also discuss the outlook of state-of-the-art biology-guided bioelectrical interfaces with high biocompatibility, extended long-term stability, and integrated system functionality for potential clinical usage.
    Free, publicly-accessible full text available January 31, 2023
  5. Free, publicly-accessible full text available January 1, 2023
  6. Free, publicly-accessible full text available March 9, 2023
  7. Silicon (Si) is broadly used in electrochemical and photoelectrochemical devices, where the capacitive and Faradaic reactions at the Si/water interfaces are critical for signal transduction or noise generation. However, probing the electrified Si/water interface at the microscopic level remains a challenging task. Here we focus on hydrogenated Si surfaces in contact with water, relevant to transient electronics and photoelectrochemical modulation of biological cells and tissues. We show that by carrying out first-principles molecular dynamics simulations of the Si(100)/water interface in the presence of an electric field we can realistically correlate the computed flat-band potential and tunneling current images at the interface with experimentally measured capacitive and Faradaic currents. Specifically, we validate our simulations in the presence of bias by performing pulsed chronoamperometry measurements on Si wafers in solution. Consistent with prior experiments, our measurements and simulations indicate the presence of voltage-dependent capacitive currents at the interface. We also find that Faradaic currents are weakly dependent on the applied bias, which we relate to surface defects present in newly prepared samples.