skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Tian, Jin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The standard approach to answering an identifiable causaleffect query (e.g., P(Y |do(X)) given a causal diagram and observational data is to first generate an estimand, or probabilistic expression over the observable variables, which is then evaluated using the observational data. In this paper, we propose an alternative paradigm for answering causal-effect queries over discrete observable variables. We propose to instead learn the causal Bayesian network and its confounding latent variables directly from the observational data. Then, efficient probabilistic graphical model (PGM) algorithms can be applied to the learned model to answer queries. Perhaps surprisingly, we show that this model completion learning approach can be more effective than estimand approaches, particularly for larger models in which the estimand expressions become computationally difficult. We illustrate our method’s potential using a benchmark collection of Bayesian networks and synthetically generated causal models 
    more » « less
    Free, publicly-accessible full text available October 19, 2025
  2. null (Ed.)
  3. General methods have been developed for estimating causal effects from observational data under causal assumptions encoded in the form of a causal graph. Most of this literature assumes that the underlying causal graph is completely specified. However, only observational data is available in most practical settings, which means that one can learn at most a Markov equivalence class (MEC) of the underlying causal graph. In this paper, we study the problem of causal estimation from a MEC represented by a partial ancestral graph (PAG), which is learnable from observational data. We develop a general estimator for any identifiable causal effects in a PAG. The result fills a gap for an end-to-end solution to causal inference from observational data to effects estimation. Specifically, we develop a complete identification algorithm that derives an influence function for any identifiable causal effects from PAGs. We then construct a double/debiased machine learning (DML) estimator that is robust to model misspecification and biases in nuisance function estimation, permitting the use of modern machine learning techniques. Simulation results corroborate with the theory. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Causal effect identification is one of the most prominent and well-understood problems in causal inference. Despite the generality and power of the results developed so far, there are still challenges in their applicability to practical settings, arguably due to the finitude of the samples. Simply put, there is a gap between causal effect identification and estimation. One popular setting in which sample-efficient estimators from finite samples exist is when the celebrated back-door condition holds. In this paper, we extend weighting-based methods developed for the back-door case to more general settings, and develop novel machinery for estimating causal effects using the weighting-based method as a building block. We derive graphical criteria under which causal effects can be estimated using this new machinery and demonstrate the effectiveness of the proposed method through simulation studies. 
    more » « less
  7. null (Ed.)
  8. Cause-and-effect relations are one of the most valuable types of knowledge sought after throughout the data-driven sciences since they translate into stable and generalizable explanations as well as efficient and robust decision-making capabilities. Inferring these relations from data, however, is a challenging task. Two of the most common barriers to this goal are known as confounding and selection biases. The former stems from the systematic bias introduced during the treat- ment assignment, while the latter comes from the systematic bias during the collection of units into the sample. In this paper, we consider the problem of identifiability of causal effects when both confounding and selection biases are simultaneously present. We first investigate the problem of identifiability when all the available data is biased. We prove that the algorithm proposed by [Bareinboim and Tian, 2015] is, in fact, complete, namely, whenever the algorithm returns a failure condition, no identifiability claim about the causal relation can be made by any other method. We then generalize this setting to when, in addition to the biased data, another piece of external data is available, without bias. It may be the case that a subset of the covariates could be measured without bias (e.g., from census). We examine the problem of identifiability when a combination of biased and unbiased data is available. We propose a new algorithm that subsumes the current state-of-the-art method based on the back-door criterion. 
    more » « less