skip to main content


Search for: All records

Creators/Authors contains: "Tian, Yijun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 29, 2024
  2. Free, publicly-accessible full text available July 23, 2024
  3. Free, publicly-accessible full text available July 23, 2024
  4. Graph neural networks (GNNs) have shown remarkable performance on diverse graph mining tasks. While sharing the same message passing framework, our study shows that different GNNs learn distinct knowledge from the same graph. This implies potential performance improvement by distilling the complementary knowledge from multiple models. However, knowledge distillation (KD) transfers knowledge from high-capacity teachers to a lightweight student, which deviates from our scenario: GNNs are often shallow. To transfer knowledge effectively, we need to tackle two challenges: how to transfer knowledge from compact teachers to a student with the same capacity; and, how to exploit student GNN's own learning ability. In this paper, we propose a novel adaptive KD framework, called BGNN, which sequentially transfers knowledge from multiple GNNs into a student GNN. We also introduce an adaptive temperature module and a weight boosting module. These modules guide the student to the appropriate knowledge for effective learning. Extensive experiments have demonstrated the effectiveness of BGNN. In particular, we achieve up to 3.05% improvement for node classification and 6.35% improvement for graph classification over vanilla GNNs. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  5. Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science. In particular, it encodes molecules as numerical vectors preserving the molecular structures and features, on top of which the downstream tasks (e.g., property prediction) can be performed. Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning. In this survey, we systematically review these graph-based molecular representation techniques, especially the methods incorporating chemical domain knowledge. Specifically, we first introduce the features of 2D and 3D molecular graphs. Then we summarize and categorize MRL methods into three groups based on their input. Furthermore, we discuss some typical chemical applications supported by MRL. To facilitate studies in this fast-developing area, we also list the benchmarks and commonly used datasets in the paper. Finally, we share our thoughts on future research directions.

     
    more » « less
    Free, publicly-accessible full text available August 19, 2024