- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Konidaris, George (2)
-
Tiwari, Saket (2)
-
Yu, Shangqun (2)
-
Aguilar-Simon, Mario (1)
-
Al-Halah, Ziad (1)
-
Arnold, Sébastien M.R. (1)
-
Baker, Megan M. (1)
-
Ben-Iwhiwhu, Ese (1)
-
Brna, Andrew P. (1)
-
Brooks, Ethan (1)
-
Brown, Ryan C. (1)
-
Daniels, Zachary (1)
-
Daram, Anurag (1)
-
Delattre, Fabien (1)
-
Dellana, Ryan (1)
-
Eaton, Eric (1)
-
Fu, Haotian (1)
-
Fu, Hoatian (1)
-
Grauman, Kristen (1)
-
Hostetler, Jesse (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose a novel parameterized skill-learning algorithm that aims to learn transferable parameterized skills and synthesize them into a new action space that supports efficient learning in long-horizon tasks. We propose to leverage off-policy Meta-RL combined with a trajectory-centric smoothness term to learn a set of parameterized skills. Our agent can use these learned skills to construct a three-level hierarchical framework that models a Temporally-extended Parameterized Action Markov Decision Process. We empirically demonstrate that the proposed algorithms enable an agent to solve a set of difficult long-horizon (obstacle-course and robot manipulation) tasks.more » « less
-
Baker, Megan M.; New, Alexander; Aguilar-Simon, Mario; Al-Halah, Ziad; Arnold, Sébastien M.R.; Ben-Iwhiwhu, Ese; Brna, Andrew P.; Brooks, Ethan; Brown, Ryan C.; Daniels, Zachary; et al (, Neural Networks)
An official website of the United States government

Full Text Available