Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The 3.65 Å phase [MgSi(OH)6] is a hydrous phase that is predicted to be stable in a simplified MgO-SiO2-H2O (MSH) ternary system at pressures exceeding 9 GPa. Along cold subduction zones, it is likely to transport water, bound in its crystalline lattice, into the Earth’s interior. The 3.65 Å phase consists of Mg and Si octahedral sites attached to the hydroxyl group that forms a hydrogen bond and is predicted to undergo pressure-induced symmetrization of the hydrogen bond. Therefore, in this study, we investigate the high-pressure behavior of the 3.65 Å phase using Raman spectroscopy. We have conducted five distinct compressions up to ~60 GPa using two different pressure-transmitting media—alcohol mixture and neon. At ambient conditions, we identified vibrational modes using complementary first-principles simulations based on density functional perturbation theory. Upon compression, we note that the first derivative of the vibrational modes in the lattice region stiffens, i.e., b1lattice > 0. In contrast, the hydroxyl region softens, i.e., b1OH > 0. This is indicative of the strengthening of hydrogen bonding upon compression. We noticed a significant broadening of vibrational modes related to hydroxyl groups that are indicative of proton disorder. However, within the maximum pressures explored in this study, we did not find evidence for pressure-induced symmetrization of the hydrogen bonds. We used the pressure derivative of the vibrational modes to determine the ratio of the bulk moduli and their pressure derivative. We note that the smaller bulk moduli of hydrous phases compared to the major mantle phases are compensated by significantly larger pressure derivatives of the bulk moduli for the hydrous phases. This leads to a significant reduction in the elasticity contrast between hydrous and major mantle phases. Consequently, the detection of the degree of mantle hydration is likely to be challenging at greater depths.more » « less
-
- (Ed.)Brillouin scattering spectroscopy has been used to obtain an accurate (<1%) ρ-P equation of state (EOS) of 1:1 and 9:1 H2-He molar mixtures from 0.5 to 5.4 GPa at 296 K. Our calculated equations of state indicate close agreement with the experimental data right to the freezing pressure of hydrogen at 5.4 GPa. The measured velocities agree on average, within 0.5%, of an ideal mixing model. The ρ-P EOSs presented have a standard deviation of under 0.3% from the measured densities and under 1% deviation from ideal mixing. A detailed discussion of the accuracy, precision, and sources of error in the measurement and analyses of our equations of state is presented.more » « less
-
- (Ed.)We employed high-pressure Brillouin scattering to study the pressure dependencies of acoustic modes of glycerol up to 14 GPa at 300 K. We observed longitudinal acoustic velocities and transverse acoustic velocities for the first time from 5 to 14 GPa. The results allow the determination of a complete set of elastic properties and an accurate determination of the pressure–volume (P–V) equation of state (EOS). EOS parameters, K0 = 14.9 ± 1.8 GPa and K′0 = 5.6 ± 0.5, were determined from fits to the data from ambient pressure to 14 GPa. Direct volume measurements of the P–V EOS are consistent with those determined by Brillouin scattering. A deviation from a Cauchy-like relationship for elastic properties was observed, and the pressure dependencies of the photoelastic constants and relaxation times were documented from 5 to 14 GPa. These results have broad implications for glass-forming liquids, viscoelastic theory, and mode coupling theory.more » « less
-
Abstract The 13 single-crystal adiabatic elastic moduli (Cij) of a C2/c jadeite sample close to the ideal composition (NaAlSi2O6) and a natural P2/n diopside-rich omphacite sample have been measured at ambient condition by Brillouin spectroscopy. The obtained Cij values for the jadeite sample are: C11 = 265.4(9) GPa, C22 = 247(1) GPa, C33 = 274(1) GPa, C44 = 85.8(7) GPa, C55 = 69.3(5) GPa, C66 = 93.0(7) GPa, C12 = 84(1) GPa, C13 = 66(1) GPa, C23 = 87(2) GPa, C15 = 5.4(7) GPa, C25 = 17(1) GPa, C35 = 28.7(6) GPa, C46 = 14.6(6) GPa. Voigt-Reuss-Hill averaging of the Cij values yields aggregate bulk modulus KS = 138(3) GPa and shear modulus G = 84(2) GPa for jadeite. Systematic analysis combing previous single-crystal elasticity measurements within the diopside-jadeite solid solution indicates that the linear trends are valid for most Cij values. The νp and νs of omphacite decrease with diopside content, though the velocity changes are small as diopside component exceeds 70%. We also found that both the isotropic νp and νs, as well as the seismic anisotropy of eclogite, changed strongly with the bulk-chemical composition. The relationship between the anisotropic velocities of eclogite and the chemical composition can be a useful tool to trace the origin of the eclogitic materials in the Earth's mantle.more » « less