skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Toellner, Thomas S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The high-pressure melting curve of FeO controls key aspects of Earth’s deep interior and the evolution of rocky planets more broadly. However, existing melting studies on wüstite were conducted across a limited pressure range and exhibit substantial disagreement. Here we use an in-situ dual-technique approach that combines a suite of >1000 x-ray diffraction and synchrotron Mössbauer measurements to report the melting curve for Fe1-xO wüstite to pressures of Earth’s lowermost mantle. We further observe features in the data suggesting an order-disorder transition in the iron defect structure several hundred kelvin below melting. This solid-solid transition, suggested by decades of ambient pressure research, is detected across the full pressure range of the study (30 to 140 GPa). At 136 GPa, our results constrain a relatively high melting temperature of 4140 ± 110 K, which falls above recent temperature estimates for Earth’s present-day core-mantle boundary and supports the viability of solid FeO-rich structures at the roots of mantle plumes. The coincidence of the defect order-disorder transition with pressure-temperature conditions of Earth’s mantle base raises broad questions about its possible influence on key physical properties of the region, including rheology and conductivity. 
    more » « less
  2. Abstract The Fe3+/FeT ratios (Fe3+/[Fe2++Fe3+]) in minerals can be used to understand their crystallization and post-crystallization conditions. However, as natural minerals are often zoned and contain inclusions, bulk techniques, e.g., wet chemistry, may not provide accurate Fe3+/FeT values for a single phase of interest. We determined Fe3+/FeT ratios of amphiboles in different crystallographic orientations by single-crystal synchrotron Mössbauer spectroscopy (SMS) in energy and time domain modes from four volcanic localities (Long Valley Caldera, Mount St. Helens, Lassen Volcanic Center, U.S.A., and Mt. Pinatubo, Philippines). The high spatial resolution (as low as 12 × 12 μm spot size) and standard-free nature of SMS allow the detection of intra-grain compositional heterogeneities in Fe3+/FeT with relatively low uncertainties. We combine SMS with major element compositions, water contents, and hydrogen isotope compositions to document the Fe3+/FeT ratios as a function of mineral composition and post-crystallization dehydrogenation. Spectra were fitted with up to five distinct sites: ferrous iron on M(1), M(2), M(3), and ferric iron on M(2) and M(3), consistent with X-ray diffraction studies on single crystals of amphibole. The Fe3+/FeT ratios range from 0.14 ± 0.03 (Long Valley Caldera), 0.51 to 0.63 ± 0.02 (representing intra-grain heterogeneities, Mount St. Helens) to 0.86 ± 0.03 (Lassen Volcanic Center). The latter grain experienced post-crystallization dehydrogenation, shown by its low water content (0.6 ± 0.05 wt%) and its elevated hydrogen isotope composition (δD = +25 ± 3‰ relative to SMOW). The Fe3+/FeT ratios of 0.62 ± 0.01 and 0.20 ± 0.01 of two Mt. Pinatubo grains correlate with high-Al2O3 cores and low-Al2O3 rims and smaller phenocrysts in the sample, respectively. This study shows that SMS is capable of distinguishing two different domains with dissimilar Fe3+/FeT values formed under different crystallization conditions, demonstrating that SMS in combination with major element, water, and hydrogen isotope compositions allows the interpretation of amphibole Fe3+/FeT ratios in the context of crystallization and post-crystallization processes. 
    more » « less
  3. null (Ed.)
    Abstract The high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth’s lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe 3+ spin crossover (~ 45 GPa), the Debye sound velocity ( v D ) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariant v D . Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities ( v S , v P , and v Φ ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low- v Φ and low- v P anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between v S and v Φ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle. 
    more » « less
  4. Abstract The transport of hydrogen into Earth's deep interior may have an impact on lower mantle dynamics as well as on the seismic signature of subducted material. Due to the stability of the hydrous phasesδ‐AlOOH (delta phase), MgSiO2(OH)2(phase H), andε‐FeOOH at high temperatures and pressures, their solid solutions may transport significant amounts of hydrogen as deep as the core‐mantle boundary. We have constrained the equation of state, including the effects of a spin crossover in the Fe3+atoms, of (Al, Fe)‐phase H: Al0.84Fe3+0.07Mg0.02Si0.06OOH, using powder X‐ray diffraction measurements to 125 GPa, supported by synchrotron Mössbauer spectroscopy measurements on (Al, Fe)‐phase H andδ‐(Al, Fe)OOH. The changes in spin state of Fe3+in (Al, Fe)‐phase H results in a significant decrease in bulk sound velocity and occurs over a different pressure range (48–62 GPa) compared withδ‐(Al, Fe)OOH (32–40 GPa). Changes in axial compressibilities indicate a decrease in the compressibility of hydrogen bonds in (Al, Fe)‐phase H near 30 GPa, which may be associated with hydrogen bond symmetrization. The formation of (Al, Fe)‐phase H in subducted oceanic crust may contribute to scattering of seismic waves in the mid‐lower mantle (∼1,100–1,550 km). Accumulation of 1–4 wt.% (Al, Fe)‐phase H could reproduce some of the seismic signatures of large, low seismic‐velocity provinces. Our results suggest that changes in the electronic structure of phases in the (δ‐AlOOH)‐(MgSiO2(OH)2)‐(ε‐FeOOH) solid solution are sensitive to composition and that the presence of these phases in subducted oceanic crust could be seismically detectable throughout the lower mantle. 
    more » « less