Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many different types of phases can form within alloys, from highly-ordered intermetallic compounds, to structurally-ordered but chemically-disordered solid solutions, and structurally-disordered (i.e. amorphous) metallic glasses. The different types of phases display very different properties, so predicting phase formation is important for understanding how materials will behave. Here, we review how first-principles data from the AFLOW repository and the aflow++ software can be used to predict phase formation in alloys, and describe some general trends that can be deduced from the data, particularly with respect to the importance of disorder and entropy in multicomponent systems.more » « less
-
Abstract Discovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics. It was also found that the optical response of high-entropy carbides can be largely tuned from the near-IR to visible when changing the transition metal components and their concentration. By monitoring the electronic structures, we suggest rules for optimizing optical properties and designing tailored high-entropy ceramics. Experiments performed on the archetype carbide HfTa 4 C 5 yielded plasmonic properties from room temperature to 1500K. Here we propose plasmonic transition-metal high-entropy carbides as a class of multifunctional materials. Their combination of plasmonic activity, high-hardness, and extraordinary thermal stability will result in yet unexplored applications.more » « less
-
Abstract The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics1–3. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor4, most innovation has been slowly driven by experimental means1–3. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy–entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries.more » « less
-
High entropy oxides are emerging as an exciting new avenue to design highly tailored functional behaviors that have no traditional counterparts. Study and application of these materials are bringing together scientists and engineers from physics, chemistry, and materials science. The diversity of each of these disciplines comes with perspectives and jargon that may be confusing to those outside of the individual fields, which can result in miscommunication of important aspects of research. In this Perspective, we provide examples of research and characterization taken from these different fields to provide a framework for classifying the differences between compositionally complex oxides, high entropy oxides, and entropy stabilized oxides, which is intended to bring a common language to this emerging area. We highlight the critical importance of understanding a material’s crystallinity, composition, and mixing length scales in determining its true definition.more » « less
An official website of the United States government
