AlxCoCrFeNi High Entropy Alloys (HEAs), also referred to as multiprincipal element alloys, have attracted significant interest due to their promising mechanical and structural properties. Despite these attributes, AlxCoCrFeNi HEAs are susceptible to phase separation, forming a wide range of secondary phases upon aging, including NiAl–B2 and Cr-rich phases. Controlling the formation of these phases will enable the design of age-hardenable alloys with optimized corrosion resistance. In this study, we examine the critical role of Al additions and their concentration on the stability of the CoCrFeNi base alloy, uncovering the connections between Al composition and the resulting microstructure. Addition of 0.1 mol fraction of Al destabilizes the single-phase microstructure and results in the formation of Cr-rich body-centered-cubic (bcc) phases. Increasing the composition of Al (0.3–0.5 mol fraction) results in the formation of more complex coprecipitates, NiAl–B2 and Cr-rich bcc. Interestingly, we find that the increase of the Al content stimulates the formation of NiAl–B2 phases, increases the overall density of secondary phases, and influences the content of Cr in Cr-rich bcc phases. Density functional theory calculations of simple decomposition reactions of AlxCoCrFeNi HEAs corroborate the tendency for precipitate formation of these phases upon increased Al composition. Additionally, these calculations support previous results, indicating the base CoCrFeNi alloy to be unstable at low temperature. This work provides a foundation for predictive understanding of phase evolution, opening the window toward designing innovative alloys for targeted applications.
more »
« less
AFLOW for Alloys
Many different types of phases can form within alloys, from highly-ordered intermetallic compounds, to structurally-ordered but chemically-disordered solid solutions, and structurally-disordered (i.e. amorphous) metallic glasses. The different types of phases display very different properties, so predicting phase formation is important for understanding how materials will behave. Here, we review how first-principles data from the AFLOW repository and the aflow++ software can be used to predict phase formation in alloys, and describe some general trends that can be deduced from the data, particularly with respect to the importance of disorder and entropy in multicomponent systems.
more »
« less
- Award ID(s):
- 2219788
- PAR ID:
- 10571089
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Journal of Phase Equilibria and Diffusion
- Volume:
- 45
- Issue:
- 3
- ISSN:
- 1547-7037
- Page Range / eLocation ID:
- 219 to 227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A molten metal is an atomic liquid that lacks directional bonding and is free from chemical ordering effects. Experimentally, liquid metals can be undercooled by up to ∼20% of their melting temperature but crystallize rapidly in subnanosecond time scales at deeper undercooling. To address this limited metastability with respect to crystallization, we employed molecular dynamics simulations to study the thermodynamics and kinetics of the glass transition and crystallization in deeply undercooled liquid Ag. We present direct evidence that undercooled liquid Ag undergoes a first-order configurational freezing transition from the high-temperature homogeneous disordered liquid phase (L) to a metastable, heterogeneous, configura-tionally ordered state that displays elastic rigidity with a persistent and finite shear modulus, μ. We designate this ordered state as the G-phase and conclude it is a metastable non-crystalline phase. We show that the L−G transition occurs by nucleation of the G-phase from the L-phase. Both te L- and G-phases are metastable because both ultimately crystallize. The observed first-order transition is reversible: the G-phase displays a first-order melting transition to the L-phase at a coexistence temperature, TG,M. We develop a thermodynamic description of the two phases and their coexistence boundary.more » « less
-
Micron-scale, liquid-liquid phase separation occurs in membranes of living cells, with physiological consequences. To discover which lipids might support phase separation in cell membranes and how lipids might partition between phases, miscibility phase diagrams have been mapped for model membranes. Typically, model membranes are composed of ternary mixtures of a lipid with a high melting temperature, a lipid with a low melting temperature, and cholesterol. Phospholipids in ternary mixtures are chosen primarily to favor stable membranes (phosphatidylcholines and sphingomyelins) or add charge (phosphatidylglycerols and phosphatidylserines). A major class of phospholipids missing from experimental ternary diagrams has been the phosphatidylethanolamines (PEs). PE-lipids constitute up to 20 mol% of common biological membranes, where they influence protein function and facilitate membrane fusion. These biological effects are often attributed to PE’s smaller headgroup, which leads to higher monolayer spontaneous curvatures and higher melting temperatures. Taken alone, the higher melting points of saturated PE-lipids imply that liquid-liquid phase separation should persist to higher temperatures in membranes containing PE-lipids. Here, we tested that hypothesis by substituting a saturated PE-lipid (DPPE) for its corresponding PC-lipid (DPPC) in two well-studied ternary membranes (DOPC/DPPC/cholesterol and DiphyPC/DPPC/cholesterol). We used fluorescence microscopy to map full ternary phase diagrams for giant vesicles over a range of temperatures. Surprisingly, we found no micron-scale, liquid-liquid phase separation in vesicles of the first mixture (DOPC/DPPE/cholesterol), and only a small region of liquid-liquid phase separation in the second mixture (DiphyPC/DPPE/cholesterol). Instead, coexisting solid and liquid phases were widespread, with the solid phase enriched in DPPE. An unusual feature of these ternary membranes is that solid and liquid-ordered phases can be distinguished by fluorescence microscopy, so tie-line directions can be estimated throughout the phase diagram, and transition temperatures to the 3-phase region (containing a liquid-disordered phase, a liquid-ordered phase, and a solid phase) can be accurately measured.more » « less
-
Csikász-Nagy, Attila (Ed.)The Notch-Delta signaling pathway mediates cell differentiation implicated in many regulatory processes including spatiotemporal patterning in tissues by promoting alternate cell fates between neighboring cells. At the multicellular level, this "lateral inhibition” principle leads to checkerboard patterns with alternation of Sender and Receiver cells. While it is well known that stochasticity modulates cell fate specification, little is known about how stochastic fluctuations at the cellular level propagate during multicell pattern formation. Here, we model stochastic fluctuations in the Notch-Delta pathway in the presence of two different noise types–shot and white–for a multicell system. Our results show that intermediate fluctuations reduce disorder and guide the multicell lattice toward checkerboard-like patterns. By further analyzing cell fate transition events, we demonstrate that intermediate noise amplitudes provide enough perturbation to facilitate “proofreading” of disordered patterns and cause cells to switch to the correct ordered state (Sender surrounded by Receivers, and vice versa). Conversely, high noise can override environmental signals coming from neighboring cells and lead to switching between ordered and disordered patterns. Therefore, in analogy with spin glass systems, intermediate noise levels allow the multicell Notch system to escape frustrated patterns and relax towards the lower energy checkerboard pattern while at large noise levels the system is unable to find this ordered base of attraction.more » « less
-
Recognition of the role of extended defects on local phase transitions has led to the conceptualization of the defect phase, localized thermodynamically stable interfacial states that have since been applied in a myriad of material systems to realize significant enhancements in material properties. Here, we explore the kinetics of grain boundary confined amorphous defect phases, utilizing the high temperature and scanning rates afforded by ultrafast differential scanning calorimetry to apply targeted annealing/quenching treatments at high rates capable of capturing the kinetic behavior. Four Al-based nanocrystalline alloys, including two binary systems, Al–Ni and Al–Y, and two ternary systems, Al–Mg–Y and Al–Ni–Y, are selected to probe the materials design space (enthalpy of mixing, enthalpy of segregation, chemical complexity) for amorphous defect phase formation and stability, with correlative transmission electron microscopy applied to link phase evolution and grain stability to nanocalorimetry signatures. A series of targeted isothermal annealing heat treatments is utilized to construct a Time–Temperature-Transformation curve for the Al–Ni system, from which a critical cooling rate of 2400 °C/s was determined for the grain boundary confined disordered-to-ordered transition. Finally, a thermal profile consisting of 1000 repeated annealing sequences was created to quantify the recovery of the amorphous defect phase following sequential annealing treatments, with results indicating remarkable microstructural stability after annealing at temperatures above 90% of the melting temperature. This work contributes to a deeper understanding of grain boundary localized thermodynamics and kinetics, with potential implications for the design and optimization of advanced materials with enhanced stability and performance.more » « less
An official website of the United States government

