skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tolley, Andrew J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Galileon theory is a prototypical effective field theory that incorporates the Vainshtein screening mechanism—a feature that arises in some extensions of general relativity, such as massive gravity. The Vainshtein effect requires that the theory contain higher order derivative interactions, which results in Galileons, and theories like them, failing to be technically well posed. While this is not a fundamental issue when the theory is correctly treated as an effective field theory, it nevertheless poses significant practical problems when numerically simulating this model. These problems can be tamed using a number of different approaches: introducing an active low-pass filter and/or constructing a UV completion at the level of the equations of motion, which controls the high momentum modes. These methods have been tested on cubic Galileon interactions, and have been shown to reproduce the correct low-energy behavior. Here we show how the numerical UV-completion method can be applied to quartic Galileon interactions, and present the first simulations of the quartic Galileon model using this technique. We demonstrate that our approach can probe physics in the regime of the effective field theory in which the quartic term dominates, while successfully reproducing the known results for cubic interactions. Published by the American Physical Society2024 
    more » « less
  2. The class of Galileon scalar fields theories encapsulate the Vainshtein screening mechanism, which is characteristic of a large range of infrared modified theories of gravity. Such theories can lead to testable departures from general relativity through fifth forces and new scalar modes of gravitational radiation. However, the inherent nonlinearity of the Vainshtein mechanism has limited analytic attempts to describe Galileon theories with both cubic and quartic interactions. To improve on this, we perform direct numerical simulations of the quartic Galileon model for a rotating binary source and infer the power spectrum of given multipoles. To tame numerical instabilities we utilize a low-pass filter, extending previous work on the cubic Galileon. Our findings show that the multipole expansion is well defined and under control. Moreover, our results confirm that despite being a nonlinear scalar, the dominant Galileon radiation is quadrupole, and we find a new scaling behavior deep inside the Vainshtein region. Published by the American Physical Society2024 
    more » « less
  3. Free, publicly-accessible full text available December 1, 2026
  4. This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more kilometer--scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions. 
    more » « less
  5. Abstract The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas. 
    more » « less