- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Toner, B M (2)
-
An, D (1)
-
Bagnoud, A (1)
-
Barnhart, E (1)
-
Bomberg, M (1)
-
Bradley, J (1)
-
Budwill, K (1)
-
Caffrey, S M (1)
-
Carlson, C A (1)
-
Druffel, E_R M (1)
-
Edwards, A (1)
-
Fields, M (1)
-
German, C R (1)
-
Gralnick, J (1)
-
Hansell, D A (1)
-
Jenkins, W J (1)
-
Kadnikov, V (1)
-
Lang, S Q (1)
-
Mitchell, A C (1)
-
Momper, L (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dissolved organic carbon (DOC) constitutes the largest pool of reduced carbon in the global ocean, with important contributions from both recently formed and aged, biologically refractory DOC (RDOC). The mechanisms regulating RDOC transformation and removal remain uncertain though hydrothermal vents have been identified as sources and sinks. This study examines RDOC sinks in the deep Pacific Ocean, highlighting the role of submarine hydrothermal systems. Geochemical survey data from GO‐SHIP and GEOTRACES projects, alongside specific investigations of Pacific hydrothermal systems, suggest that particulate iron introduced by hydrothermal systems plays a key role in scavenging DOC and delivering it to the seafloor, leaving a deficit in the RDOC of the deep ocean. Dilution of the oceanic water column by hydrothermal fluids exhibiting low DOC concentrations likely plays a secondary role.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Soares, A; Edwards, A; An, D; Bagnoud, A; Bradley, J; Barnhart, E; Bomberg, M; Budwill, K; Caffrey, S M; Fields, M; et al (, Microbiology)While recent efforts to catalogue Earth’s microbial diversity have focused upon surface and marine habitats, 12–20 % of Earth’s biomass is suggested to exist in the terrestrial deep subsurface, compared to ~1.8 % in the deep subseafloor. Metagenomic studies of the terrestrial deep subsurface have yielded a trove of divergent and functionally important microbiomes from a range of localities. However, a wider perspective of microbial diversity and its relationship to environmental conditions within the terrestrial deep subsurface is still required. Our meta-analysis reveals that terrestrial deep subsurface microbiota are dominated byBetaproteobacteria, GammaproteobacteriaandFirmicutes, probably as a function of the diverse metabolic strategies of these taxa. Evidence was also found for a common small consortium of prevalentBetaproteobacteriaandGammaproteobacteriaoperational taxonomic units across the localities. This implies a core terrestrial deep subsurface community, irrespective of aquifer lithology, depth and other variables, that may play an important role in colonizing and sustaining microbial habitats in the deep terrestrial subsurface. Anin silicocontamination-aware approach to analysing this dataset underscores the importance of downstream methods for assuring that robust conclusions can be reached from deep subsurface-derived sequencing data. Understanding the global panorama of microbial diversity and ecological dynamics in the deep terrestrial subsurface provides a first step towards understanding the role of microbes in global subsurface element and nutrient cycling.more » « less
An official website of the United States government
