Spatial confinement has been frequently engineered to control the flow and relaxation dynamics of exciton polaritons. While widely investigated in GaAs microcavities, exciton-polariton coupling between discretized polariton modes arising from spatially confined 2D crystals been has been less exhaustively studied. Here, we use coherent 2D photoluminescence-detected micro-spectroscopy to detect oscillating 2D peaks exclusively from a spatial trap in a microcavity with an embedded van-der-Waals heterostructure at room temperature. We observe a wide variation of oscillatory phases as a function of spectral position within the 2D spectrum, which suggests the existence of a coupling between the discretized polariton modes. The latter is accompanied by the generation of coherent phonons.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Abstract Moiré superlattices of semiconducting transition metal dichalcogenides enable unprecedented spatial control of electron wavefunctions, leading to emerging quantum states. The breaking of translational symmetry further introduces a new degree of freedom: high symmetry moiré sites of energy minima behaving as spatially separated quantum dots. We demonstrate the superposition between two moiré sites by constructing a trilayer WSe2/monolayer WS2moiré heterojunction. The two moiré sites in the first layer WSe2interfacing WS2allow the formation of two different interlayer excitons, with the hole residing in either moiré site of the first layer WSe2and the electron in the third layer WSe2. An electric field can drive the hybridization of either of the interlayer excitons with the intralayer excitons in the third WSe2layer, realizing the continuous tuning of interlayer exciton hopping between two moiré sites and a superposition of the two interlayer excitons, distinctively different from the natural trilayer WSe2.
-
Free, publicly-accessible full text available May 1, 2024
-
Abstract Transition metal dichalcogenide (TMDC) moiré superlattices, owing to the moiré flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2trilayer moiré superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2valence moiré flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2layers share one hole laterally confined in one moiré unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moiré system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions.
-
Abstract This paper provides comprehensive experimental analysis relating to improvements in the two-dimensional (2D) p-type metal–oxide–semiconductor (PMOS) field effect transistors (FETs) by pure van der Waals (vdW) contacts on few-layer tungsten diselenide (WSe2) with high-k metal gate (HKMG) stacks. Our analysis shows that standard metallization techniques (e.g., e-beam evaporation at moderate pressure ~ 10–5 torr) results in significant Fermi-level pinning, but Schottky barrier heights (SBH) remain small (< 100 meV) when using high work function metals (e.g., Pt or Pd). Temperature-dependent analysis uncovers a more dominant contribution to contact resistance from the channel access region and confirms significant improvement through less damaging metallization techniques (i.e., reduced scattering) combined with strongly scaled HKMG stacks (enhanced carrier density). A clean contact/channel interface is achieved through high-vacuum evaporation and temperature-controlled stepped deposition providing large improvements in contact resistance. Our study reports low contact resistance of 5.7 kΩ-µm, with on-state currents of ~ 97 µA/µm and subthreshold swing of ~ 140 mV/dec in FETs with channel lengths of 400 nm. Furthermore, theoretical analysis using a Landauer transport ballistic model for WSe2SB-FETs elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance (excellent on-state current vs subthreshold swing benchmarks) towards the ultimate CMOS scaling limit.
-
Abstract The formation of a charge density wave state is characterized by an order parameter. The way it is established provides unique information on both the role that correlation plays in driving the charge density wave formation and the mechanism behind its formation. Here we use time and angle resolved photoelectron spectroscopy to optically perturb the charge-density phase in 1T-TiSe $$_2$$ 2 and follow the recovery of its order parameter as a function of energy, momentum and excitation density. Our results reveal that two distinct orders contribute to the gap formation, a CDW order and pseudogap-like order, manifested by an overall robustness to optical excitation. A detailed analysis of the magnitude of the the gap as a function of excitation density and delay time reveals the excitonic long-range nature of the CDW gap and the short-range Jahn–Teller character of the pseudogap order. In contrast to the gap, the intensity of the folded Se $$_{4p}$$ 4 p * band can only give access to the excitonic order. These results provide new information into the the long standing debate on the origin of the gap in TiSe $$_2$$ 2 and place it in the same context of other quantum materials where amore »Free, publicly-accessible full text available December 1, 2023
-
Free, publicly-accessible full text available December 28, 2023
-
Free, publicly-accessible full text available April 25, 2024
-
Here, we present comprehensive phononic and charge density wave properties (CDW) of rare-earth van der Waals tritellurides through temperature dependent angle-resolved Raman spectroscopy measurements. All the possible rare-earth tritellurides (RTe 3 ) ranging from R = La–Nd, Sm, Gd–Tm were synthesized through a chemical vapor transport technique to achieve high quality crystals with excellent CDW characteristics. Raman spectroscopy studies successfully identify the emergence of the CDW state and transition temperature (T CDW ), which offers a non-destructive method to identify their CDW response with micron spatial resolution. Temperature dependent Raman measurements further correlate how the atomic mass of metal cations and the resulting chemical pressure influence its CDW properties and offer detailed insight into the strength of CDW amplitude mode-phonon coupling during the CDW transition. Angle-resolved Raman measurements offer the first insights into the CDW-phonon symmetry interplay by monitoring the change in the symmetry of phonon mode across the CDW transition. Overall results introduce the library of RTe 3 CDW materials and establish their characteristics through the non-destructive angle-resolved Raman spectroscopy technique.Free, publicly-accessible full text available November 1, 2023