skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Tonnemacher, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a mechanism for unlicensed LTE channel selection that not only takes into account interference to and from Wi-Fi access points but also considers other LTE operators in the unlicensed band. By collecting channel utilization statistics and sharing this information periodically with other unlicensed LTE eNBs, each eNB can improve their channel selection given their limited knowledge of the full topology. While comparing our algorithm to existing solutions, we find that the similarity between sensed Wi-Fi occupation at neighboring eNBs greatly impacts the performance of channel selection algorithms. To achieve better performance across diverse scenarios, we expand on our statistical channel selection formulation to include reinforcement learning, thereby balancing the shared contextual information with historical performance. We simulate operation in the unlicensed band using our channel selection algorithm and show how Wi-Fi load and inter-cell interference estimation can jointly be used to select transmission channels for all small cells in the network. Our approaches lead to an increase in user-perceived throughput and spectral efficiency across the entire band when compared to the greedy channel selection. 
    more » « less