skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Torrance, Andrew W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The recent proliferation of large language models (LLMs) has led to divergent narratives about their environmental impacts. Some studies highlight the substantial carbon footprint of training and using LLMs, while others argue that LLMs can lead to more sustainable alternatives to current practices. We reconcile these narratives by presenting a comparative assessment of the environmental impact of LLMs vs. human labor, examining their relative efficiency across energy consumption, carbon emissions, water usage, and cost. Our findings reveal that, while LLMs have substantial environmental impacts, their relative impacts can be dramatically lower than human labor in the U.S. for the same output, with human-to-LLM ratios ranging from 40 to 150 for a typical LLM (Llama-3-70B) and from 1200 to 4400 for a lightweight LLM (Gemma-2B-it). While the human-to-LLM ratios are smaller with regard to human labor in India, these ratios are still between 3.4 and 16 for a typical LLM and between 130 and 1100 for a lightweight LLM. Despite the potential benefit of switching from humans to LLMs, economic factors may cause widespread adoption to lead to a new combination of human and LLM-driven work, rather than a simple substitution. Moreover, the growing size of LLMs may substantially increase their energy consumption and lower the human-to-LLM ratios, highlighting the need for further research to ensure the sustainability and efficiency of LLMs. 
    more » « less
  2. Abstract As AI systems proliferate, their greenhouse gas emissions are an increasingly important concern for human societies. In this article, we present a comparative analysis of the carbon emissions associated with AI systems (ChatGPT, BLOOM, DALL-E2, Midjourney) and human individuals performing equivalent writing and illustrating tasks. Our findings reveal that AI systems emit between 130 and 1500 times less CO2e per page of text generated compared to human writers, while AI illustration systems emit between 310 and 2900 times less CO2e per image than their human counterparts. Emissions analyses do not account for social impacts such as professional displacement, legality, and rebound effects. In addition, AI is not a substitute for all human tasks. Nevertheless, at present, the use of AI holds the potential to carry out several major activities at much lower emission levels than can humans. 
    more » « less