skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: The carbon emissions of writing and illustrating are lower for AI than for humans
Abstract As AI systems proliferate, their greenhouse gas emissions are an increasingly important concern for human societies. In this article, we present a comparative analysis of the carbon emissions associated with AI systems (ChatGPT, BLOOM, DALL-E2, Midjourney) and human individuals performing equivalent writing and illustrating tasks. Our findings reveal that AI systems emit between 130 and 1500 times less CO2e per page of text generated compared to human writers, while AI illustration systems emit between 310 and 2900 times less CO2e per image than their human counterparts. Emissions analyses do not account for social impacts such as professional displacement, legality, and rebound effects. In addition, AI is not a substitute for all human tasks. Nevertheless, at present, the use of AI holds the potential to carry out several major activities at much lower emission levels than can humans.  more » « less
Award ID(s):
2121572
PAR ID:
10559396
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Predicting the embodied scope 3 carbon dioxide equivalent (CO2e) emissions from purchased electricity for end users in the United States is challenging due to electricity transmission within interconnected power grids. Existing methods only focus on large aggregation areas, thereby ignoring potentially significant emission factor (EF) variations, so this study proposes a novel method to translate the CO2e emissions from the balancing authority (BA)-level to the county-level by utilizing explicit finite-difference theory for electricity flow predictions, and then employing economic input–output theory to evaluate the scope 3 embodied lifecycle CO2e emissions. Results show that the generation-based EFs at the BA-level range from 0.007 to 0.905 MT-CO2e/MWh with a mean value of 0.400 MT-CO2e/MWh and a standard deviation of 0.229 MT-CO2e/MWh. The consumption-based EFs at the BA-level range from 0.008 to 0.836 MT-CO2e/MWh with a mean value of 0.378 MT-CO2e/MWh and a standard deviation of 0.019 MT-CO2e/MWh. Results also show that sixteen BA consumption-based EFs deviate by more than 20% compared to their generation-based EFs, which indicates the significance of accounting for electricity interchanges in emissions quantification processes. A larger range of possible consumption-based EFs is revealed at the county-level: 0.007 to 0.902 MT-CO2e/MWh, with a mean value of 0.452 MT-CO2e/MWh and a standard deviation of 0.123 MT-CO2e/MWh. Results also indicate significant variations in EFs of counties within each BA: 20 BAs have county-level EFs range greater than 0.1 MT-CO2e/MWh, 13 BAs have county-level EFs range greater than 0.2 MT-CO2e/MWh and 6 BAs have county-level EFs range beyond 0.3 MT-CO2e/MWh. 
    more » « less
  2. The waste generated by the brewing industry, particularly brewer’s spent grain (BSG) and wastewater, presents challenges for sustainable management practices. While BSG is traditionally utilized as cattle feed, this option is not universally accessible. This study considered the environmental impact of a novel, laboratory-based process for converting BSG into biochar that also utilizes brewing wastewater, as compared to disposing of BSG and cleaning chemical wastewater. The study employed a carbon footprint assessment approach to quantify the greenhouse gas (GHG) emissions associated with each disposal method, using one unprocessed kg of BSG as the functional unit. The results indicated that landfilling BSG generated approximately 3 kg CO2 equivalent (CO2e) per kg of unprocessed BSG, whereas biochar production reduced emissions to 1.18 kg CO2e per kg of BSG. The study concluded that diverting BSG from landfills to biochar production presents a viable strategy for minimizing environmental impacts associated with BSG disposal. However, several factors must be considered in the development of a biochar production facility, including biochar transportation. These elements may contribute more GHG emissions than landfilling if not properly designed. 
    more » « less
  3. The objective of this research is to evaluate the effects of cropping choices on land, water use for irrigation, and greenhouse gas emissions after introducing canola (Brassica napus L.) cultivation for the production of 60 million gallons of biodiesel per year. Characterization of regional farm-level cropping patterns and agronomic inputs and economic data are used to model the adoption of canola in place of the diverse incumbent cropping patterns in four regions of California: Northern and Southern San Joaquin Valleys, Sacramento Valley, and Southern California, using the Bioenergy Crop Adoption Model. The life cycle assessment approach is then used to assess environmental impacts due to cultivation of canola in place of the incumbent cropping patterns in terms of: (1) land use; (2) life-cycle greenhouse gas emissions due to direct land use change (kg CO2e ac-1); (3) greenhouse gas emissions due to irrigation water (kg CO2e ac-1); and (4) life-cycle greenhouse gas emissions expressed in grams of carbon dioxide equivalent per megajoule of biodiesel. Preliminary results show the adoption price of the canola with a yield of 1.5 U.S. tons per acre is estimated to be $481 per ton of canola in 2012 dollars at which point a total of 508,400 acres appear in canola cultivation. This land area (508, 400 acres) is equivalent to approximately 89 million gallons of biodiesel from canola per year given the assumptions stated in this study. Consequentially, crops that are less profitable are replaced with canola and greenhouse gas emissions due to irrigation water are reduced while maintaining a diversified percentage of the incumbent cropping patterns, as well as canola cultivation. 
    more » « less
  4. The objective of this research is to evaluate the effects of cropping choices on land, water use for irrigation, and greenhouse gas emissions after introducing canola (Brassica napus L.) cultivation for the production of 60 million gallons of biodiesel per year. Characterization of regional farm-level cropping patterns and agronomic inputs and economic data are used to model the adoption of canola in place of the diverse incumbent cropping patterns in four regions of California: Northern and Southern San Joaquin Valleys, Sacramento Valley, and Southern California, using the Bioenergy Crop Adoption Model. The life cycle assessment approach is then used to assess environmental impacts due to cultivation of canola in place of the incumbent cropping patterns in terms of: (1) land use; (2) life-cycle greenhouse gas emissions due to direct land use change (kg CO2e ac-1); (3) greenhouse gas emissions due to irrigation water (kg CO2e ac-1); and (4) life-cycle greenhouse gas emissions expressed in grams of carbon dioxide equivalent per megajoule of biodiesel. Preliminary results show the adoption price of the canola with a yield of 1.5 U.S. tons per acre is estimated to be $481 per ton of canola in 2012 dollars at which point a total of 508,400 acres appear in canola cultivation. This land area (508, 400 acres) is equivalent to approximately 89 million gallons of biodiesel from canola per year given the assumptions stated in this study. Consequentially, crops that are less profitable are replaced with canola and greenhouse gas emissions due to irrigation water are reduced while maintaining a diversified percentage of the incumbent cropping patterns, as well as canola cultivation. 
    more » « less
  5. Communities are considering local food production in response to the pressing need to reduce food system greenhouse gas (GHG) emissions. However, local food systems can vary considerably in design and operation, including controlled environment agriculture (CEA), which refers to agricultural production that takes place within an enclosed space where environmental conditions, such as temperature, humidity, and light, are precisely controlled. Such systems require a considerable amount of energy and thus emissions; therefore, this study seeks to quantify these environmental impacts to determine how local CEA systems compare to alternative systems. For this study’s methods, we apply life cycle assessment methodology to quantify the cradle-to-storeshelf GHG emissions and water consumption of four lettuce production systems: local indoor plant factory, local greenhouse, local seasonal soil, and conventional centralized production in California with transportation. Using geographically specific inputs, the study estimates the environmental impact of the different production systems including geospatially resolved growth modeling, emissions intensity, and transportation distances. The results include the major finding that baseline CEA systems always have higher GHG emissions (2.6–7.7 kg CO2e kg−1) than centralized production (0.3–1.0 kg CO2e kg−1), though water consumption is significantly less owing to hydroponic efficiency. In contrast, local seasonal soil production generally has a lower GHG impact than centralized production, though water consumption varies by crop yield and local precipitation during growing seasons. Scenario analyses indicate CEA facilities would need to electrify all systems and utilize low-carbon electricity sources to have equivalent or lower GHG impacts than California centralized production plus transportation. We conclude that these results can inform consumers and policy makers that local seasonal production and conventional supply chains are more sustainable than local CEA production in near-term food-energy-water sustainability nexus decision making. 
    more » « less