skip to main content


Search for: All records

Creators/Authors contains: "Tracey, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Oxygen minimum zones (OMZs), due to their large volumes of perennially deoxygenated waters, are critical regions for understanding how the interplay between anaerobic and aerobic nitrogen (N) cycling microbial pathways affects the marine N budget. Here, we present a suite of measurements of the most significant OMZ N cycling rates, which all involve nitrite (NO2-) as a product, reactant, or intermediate, in the eastern tropical North Pacific (ETNP) OMZ. These measurements and comparisons to data from previously published OMZ cruisespresent additional evidence that NO3- reduction is the predominant OMZ N flux, followed by NO2- oxidation back to NO3-. The combined rates of both of these N recycling processes were observed to be much greater (up to nearly 200 times) thanthe combined rates of the N loss processes of anammox and denitrification, especially in waters near the anoxic–oxic interface. We also showthat NO2- oxidation can occur when O2 is maintained near 1 nM by a continuous-purge system, NO2-oxidation and O2 measurements that further strengthen the case for truly anaerobic NO2- oxidation. We also evaluate thepossibility that NO2- dismutation provides the oxidative power for anaerobic NO2- oxidation. The partitioning ofN loss between anammox and denitrification differed widely from stoichiometric predictions of at most 29 % anammox; in fact,N loss rates at many depths were entirely due to anammox. Our new NO3- reduction, NO2- oxidation, dismutation, andN loss data shed light on many open questions in OMZ N cycling research, especially the possibility of truly anaerobicNO2- oxidation.

     
    more » « less
  2. The Association for the Sciences of Limnology and Oceanography (ASLO) sponsors Eco-DAS, which is now in its 30th year. The program aims to unite aquatic scientists, develop diverse collaborations, and provide professional development training opportunities with guests from federal agencies, nonprofits, academia, tribal groups, and other workplaces (a previous iteration is summarized in Ghosh et al. 2022). Eco-DAS XV was one of the largest and most nationally diverse cohorts, including 37 early career aquatic scientists, 15 of whom were originally from 9 different countries outside the United States (Fig. 2). As the first cohort to meet in-person since the COVID-19 pandemic, Eco-DAS participants convened from 5 to 11 March 2023 to expand professional networks, create shared projects, and discuss areas of priority for the aquatic sciences. During the weeklong meeting, participants developed 46 proposal ideas, 16 of which will be further developed into projects and peer-reviewed manuscripts. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024
  3. null (Ed.)
    Abstract The ocean is a net source of N 2 O, a potent greenhouse gas and ozone-depleting agent. However, the removal of N 2 O via microbial N 2 O consumption is poorly constrained and rate measurements have been restricted to anoxic waters. Here we expand N 2 O consumption measurements from anoxic zones to the sharp oxygen gradient above them, and experimentally determine kinetic parameters in both oxic and anoxic seawater for the first time. We find that the substrate affinity, O 2 tolerance, and community composition of N 2 O-consuming microbes in oxic waters differ from those in the underlying anoxic layers. Kinetic parameters determined here are used to model in situ N 2 O production and consumption rates. Estimated in situ rates differ from measured rates, confirming the necessity to consider kinetics when predicting N 2 O cycling. Microbes from the oxic layer consume N 2 O under anoxic conditions at a much faster rate than microbes from anoxic zones. These experimental results are in keeping with model results which indicate that N 2 O consumption likely takes place above the oxygen deficient zone (ODZ). Thus, the dynamic layer with steep O 2 and N 2 O gradients right above the ODZ is a previously ignored potential gatekeeper of N 2 O and should be accounted for in the marine N 2 O budget. 
    more » « less
  4. Abstract

    Estuaries emit a large but highly uncertain amount of Nitrous oxide (N2O) into the atmosphere. To better understand N2O cycling processes in estuaries, we provide the first direct observations of N2O consumption in the seasonally anoxic Chesapeake Bay, the largest estuary in the United States. N2O consumption rates in anoxic waters reached up to 3.3 nmol L−1 d−1but were generally undetectable in oxygenated waters. However, N2O consumption rates were substantially enhanced when the oxygen concentration was experimentally decreased in initially oxygenated samples, indicating the potential of N2O consumption in oxygenated environments, for example, surface waters. These potential N2O consumption rates followed Michaelis‐Menten kinetics as a function of increasing N2O substrate concentration. N2O‐consuming microbes that predominantly contained the clade II nitrous oxide reductase gene were detected throughout the water column. These new observations of environmental controls on N2O consumption will benefit the modeling of N2O cycling and help to constrain the estuarine N2O flux.

     
    more » « less