skip to main content

Search for: All records

Creators/Authors contains: "Trajcevski, Goce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the most popular applications of Location Based Services (LBS) is recommending a Point of Interest (POI) based on user's preferences and geo-locations. However, the existing approaches have not tackled the problem of jointly determining: (a) a sequence of POIs that can be traversed within certain budget (i.e., limit on distance) and simultaneously provide a high-enough diversity; and (b) recommend the best origin (i.e., the hotel) for a given user, so that the desired route of POIs can be traversed within the specified constraints. In this work, we take a first step towards identifying this new problem and formalizing it as a novel type of a query. Subsequently, we present naïve solutions and experimental observations over a real-life datasets, illustrating the trade-offs in terms of (dis)associating the initial location from the rest of the POIs.
  2. In this paper, we present the CET-LATS (Compressing Evolution of TINs from Location Aware Time Series) system, which enables testing the impacts of various compression approaches on evolving Triangulated Irregular Networks (TINs). Specifically, we consider the settings in which values measured in distinct locations and at different time instants, are represented as time series of the corresponding measurements, generating a sequence of TINs. Different compression techniques applied to location-specific time series may have different impacts on the representation of the global evolution of TINs - depending on the distance functions used to evaluate the distortion. CET-LATS users can view and analyze compression vs. (im)precision trade-offs over multiple compression methods and distance functions, and decide which method works best for their application. We also provide an option to investigate the impact of the choice of a compression method on the quality of prediction. Our prototype is a web-based system using Flask, a lightweight Python framework, relying on Apache Spark for data management and JSON files to communicate with the front-end, enabling extensibility in terms of adding new data sources as well as compression techniques, distance functions and prediction methods.
  3. Our ability to extract knowledge from evolving spatial phenomena and make it actionable is often impaired by unreliable, erroneous, obsolete, imprecise, sparse, and noisy data. Integrating the impact of this uncertainty is a paramount when estimating the reliability/confidence of any time-varying query result from the underlying input data. The goal of this advanced seminar is to survey solutions for managing, querying and mining uncertain spatial and spatio-temporal data. We survey different models and show examples of how to efficiently enrich query results with reliability information. We discuss both analytical solutions as well as approximate solutions based on geosimulation.
  4. Location-Based Services are often used to find proximal Points of Interest PoI - e.g., nearby restaurants and museums, police stations, hospitals, etc. - in a plethora of applications. An important recently addressed variant of the problem not only considers the distance/proximity aspect, but also desires semantically diverse locations in the answer-set. For instance, rather than picking several close-by attractions with similar features - e.g., restaurants with similar menus; museums with similar art exhibitions - a tourist may be more interested in a result set that could potentially provide more diverse types of experiences, for as long as they are within an acceptable distance from a given (current) location. Towards that goal, in this work we propose a novel approach to efficiently retrieve a path that will maximize the semantic diversity of the visited PoIs that are within distance limits along a given road network. We introduce a novel indexing structure - the Diversity Aggregated R-tree, based on which we devise efficient algorithms to generate the answer-set - i.e., the recommended locations among a set of given PoIs - relying on a greedy search strategy. Our experimental evaluations conducted on real datasets demonstrate the benefits of proposed methodology over the baselinemore »alternative approaches.« less
  5. Flow super-resolution (FSR) enables inferring fine-grained urban flows with coarse-grained observations and plays an important role in traffic monitoring and prediction. The existing FSR solutions rely on deep CNN models (e.g., ResNet) for learning spatial correlation, incurring excessive memory cost and numerous parameter updates. We propose to tackle the urban flows inference using dynamic systems paradigm and present a new method FODE -- FSR with Ordinary Differential Equations (ODEs). FODE extends neural ODEs by introducing an affine coupling layer to overcome the problem of numerically unstable gradient computation, which allows more accurate and efficient spatial correlation estimation, without extra memory cost. In addition, FODE provides a flexible balance between flow inference accuracy and computational efficiency. A FODE-based augmented normalization mechanism is further introduced to constrain the flow distribution with the influence of external factors. Experimental evaluations on two real-world datasets demonstrate that FODE significantly outperforms several baseline approaches.