Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fine-grained urban flow inference (FUFI), which involves inferring fine-grained flow maps from their coarse-grained counterparts, is of tremendous interest in the realm of sustainable urban traffic services. To address the FUFI, existing solutions mainly concentrate on investigating spatial dependencies, introducing external factors, reducing excessive memory costs, etc., -- while rarely considering the catastrophic forgetting (CF) problem. Motivated by recent operator learning, we present an Urban Neural Operator solution with Incremental learning (UNOI), primarily seeking to learn grained-invariant solutions for FUFI in addition to addressing CF. Specifically, we devise an urban neural operator (UNO) in UNOI that learns mappings between approximation spaces by treating the different-grained flows as continuous functions, allowing a more flexible capture of spatial correlations. Furthermore, the phenomenon of CF behind time-related flows could hinder the capture of flow dynamics. Thus, UNOI mitigates CF concerns as well as privacy issues by placing UNO blocks in two incremental settings, i.e., flow-related and task-related. Experimental results on large-scale real-world datasets demonstrate the superiority of our proposed solution against the baselines.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available May 1, 2025
-
Understanding human mobility has become an important aspect of location-based services in tasks such as personalized recommendation and individual moving pattern recognition, enabled by the large volumes of data from geo-tagged social media (GTSM). Prior studies mainly focus on analyzing human historical footprints collected by GTSM and assuming the veracity of the data, which need not hold when some users are not willing to share their real footprints due to privacy concerns—thereby affecting reliability/authenticity. In this study, we address the problem of Inferring Real Mobility (IRMo) of users, from their unreliable historical traces. Tackling IRMo is a non-trivial task due to the: (1) sparsity of check-in data; (2) suspicious counterfeit check-in behaviors; and (3) unobserved dependencies in human trajectories. To address these issues, we develop a novel Graph-enhanced Attention model calledIRMoGA, which attempts to capture underlying mobility patterns and check-in correlations by exploiting the unreliable spatio-temporal data. Specifically, we incorporate the attention mechanism (rather than solely relying on traditional recursive models) to understand the regularity of human mobility, while employing a graph neural network to understand the mutual interactions from human historical check-ins and leveraging prior knowledge to alleviate the inferring bias. Our experiments conducted on four real-world datasets demonstrate the superior performance of IRMoGA over several state-of-the-art baselines, e.g., up to 39.16% improvement regarding the Recall score on Foursquare.more » « less
-
Recommending a Point of Interest (PoI) or a sequence of PoIs to visit based on user’s preferences and geo-locations has been one of the most popular applications of Location-Based Services (LBS). Variants have also been considered which take other factors into consideration, such as broader (implicit or explicit) semantic constraints as well as the limitations on the length of the trip. In this work, we present an efficient algorithmic solution to a novel query –PaDOC(Paths with Distance, Origin, and Category constraints) – which combines the generation of a path that (a) can be traversed within a user-specified budget (e.g., limit on distance), (b) starts at one of the user-specified origin locations (e.g., a hotel), and (c) contains PoIs from a user-specified list of PoI categories. We show that the problem of deciding whether such a path exists is an NP-hard problem. Based on a novel indexing structure, we propose two efficient algorithms for approximatePaDOCquery processing based on both conservative and progressive distance estimations. We conducted extensive experiments over real, publicly available datasets, demonstrating the benefits of the proposed methodologies over straightforward solutions.more » « less