Exposure notification applications are designed to help trace disease spreading by alerting exposed individuals to get tested. However, false alarms can cause users to become hesitant to respond, making the applications ineffective. To address the shortcomings of slow manual contact tracing, costly lockdowns, and unreliable exposure notification applications, better disease mitigation strategies are needed. In this paper, we propose a new disease mitigation paradigm where people can reduce infection spreading while maintaining some mobility (i.e., Quarantine in Motion). Our approach utilizes Graph Neural Networks (GNNs) to predict disease hotspots such as restaurants, shops and parks, and Multi-Agent Reinforcement Learning (MARL) to collaboratively manage human mobility to reduce disease transmission. As proof of concept, we simulate an infection using real-world mobility data from New York City (over 200,000 devices) and Austin (over 36,000 devices) and train 10,000 agents from each city to manage disease dynamics. Through simulation, we show that a trained population suppresses their reproduction rate below 1, thereby mitigating the outbreak.
more »
« less
Inferring Real Mobility in Presence of Fake Check-ins Data
Understanding human mobility has become an important aspect of location-based services in tasks such as personalized recommendation and individual moving pattern recognition, enabled by the large volumes of data from geo-tagged social media (GTSM). Prior studies mainly focus on analyzing human historical footprints collected by GTSM and assuming the veracity of the data, which need not hold when some users are not willing to share their real footprints due to privacy concerns—thereby affecting reliability/authenticity. In this study, we address the problem of Inferring Real Mobility (IRMo) of users, from their unreliable historical traces. Tackling IRMo is a non-trivial task due to the: (1) sparsity of check-in data; (2) suspicious counterfeit check-in behaviors; and (3) unobserved dependencies in human trajectories. To address these issues, we develop a novel Graph-enhanced Attention model calledIRMoGA, which attempts to capture underlying mobility patterns and check-in correlations by exploiting the unreliable spatio-temporal data. Specifically, we incorporate the attention mechanism (rather than solely relying on traditional recursive models) to understand the regularity of human mobility, while employing a graph neural network to understand the mutual interactions from human historical check-ins and leveraging prior knowledge to alleviate the inferring bias. Our experiments conducted on four real-world datasets demonstrate the superior performance of IRMoGA over several state-of-the-art baselines, e.g., up to 39.16% improvement regarding the Recall score on Foursquare.
more »
« less
- Award ID(s):
- 2030249
- PAR ID:
- 10581953
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Intelligent Systems and Technology
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2157-6904
- Page Range / eLocation ID:
- 1 to 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce a novel check-in time prediction problem. The goal is to predict the time a user will check-in to a given location. We formulate check-in prediction as a survival analysis problem and propose a Recurrent-Censored Regression (RCR) model. We address the key challenge of check-in data scarcity, which is due to the uneven distribution of check-ins among users/locations. Our idea is to enrich the check-in data with potential visitors, i.e., users who have not visited the location before but are likely to do so. RCR uses recurrent neural network to learn latent representations from historical check-ins of both actual and potential visitors, which is then incorporated with censored regression to make predictions. Experiments show RCR outperforms state-of-the-art event time prediction techniques on real-world datasets.more » « less
-
Estimating human mobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain regions due to the presence of spatial heterogeneity and outliers. To address these issues, in this article, we extend our prior work by introducing a new spatio-temporal deep generative model, namely, COVID-GAN+. COVID-GAN+ deals with the spatial heterogeneity issue by introducing a new spatial feature layer that utilizes the local Moran statistic to model the spatial heterogeneity strength in the data. In addition, we redesign the training objective to learn the estimated mobility changes from historical average levels to mitigate the effects of spatial outliers. We perform comprehensive evaluations using urban mobility data derived from cell phone records and census data. Results show that COVID-GAN+ can better approximate real-world human mobility responses than prior methods, including COVID-GAN.more » « less
-
Point of interest (POI) recommendation, which provides personalized recommendation of places to mobile users, is an important task in location-based social networks (LBSNs). However, quite different from traditional interest-oriented merchandise recommendation, POI recommendation is more complex due to the timing effects: we need to examine whether the POI fits a user’s availability. While there are some prior studies which included the temporal effect into POI recommendations, they overlooked the compatibility between time-varying popularity of POIs and regular availability of users, which we believe has a non-negligible impact on user decision-making. To this end, in this paper, we present a novel method which incorporates the degree of temporal matching between users and POIs into personalized POI recommendations. Specifically, we first profile the temporal popularity of POIs to show when a POI is popular for visit by mining the spatio-temporal human mobility and POI category data. Secondly, we propose latent user regularities to characterize when a user is regularly available for exploring POIs, which is learned with a user-POI temporal matching function. Finally, results of extensive experiments with real-world POI check-in and human mobility data demonstrate that our proposed user-POI temporal matching method delivers substantial advantages over baseline models for POI recommendation tasks.more » « less
-
Dimension reduction (DR) algorithms have proven to be extremely useful for gaining insight into large-scale high-dimensional datasets, particularly finding clusters in transcriptomic data. The initial phase of these DR methods often involves converting the original high-dimensional data into a graph. In this graph, each edge represents the similarity or dissimilarity between pairs of data points. However, this graph is frequently suboptimal due to unreliable high-dimensional distances and the limited information extracted from the high-dimensional data. This problem is exacerbated as the dataset size increases. If we reduce the size of the dataset by selecting points for a specific sections of the embeddings, the clusters observed through DR are more separable since the extracted subgraphs are more reliable. In this paper, we introduce LocalMAP, a new dimensionality reduction algorithm that dynamically and locally adjusts the graph to address this challenge. By dynamically extracting subgraphs and updating the graph on-the-fly, LocalMAP is capable of identifying and separating real clusters within the data that other DR methods may overlook or combine. We demonstrate the benefits of LocalMAP through a case study on biological datasets, highlighting its utility in helping users more accurately identify clusters for real-world problems.more » « less
An official website of the United States government

