Our basic knowledge of downward positive lightning leaders is incomplete due to their rarity and limited ability of VHF mapping systems to image positive streamers. Here, using high‐speed optical records and wideband electric field and magnetic field derivative signatures, we examine in detail the development of a descending positive leader, which extended intermittently via alternating branching at altitudes of 4.2 to 1.9 km and involved luminosity transients separated by millisecond‐scale quiet intervals. We show that the transients (a) are mostly initiated in previously created but already decayed branches, at a distance of the order of 100 m above the branch lower extremity, (b) extend bidirectionally with negative charge moving up, (c) establish a temporary (1 ms or so) steady‐current connection to the negative part of the overall bidirectional leader tree, and (d) exhibit brightening accompanied by new breakdowns at the positive leader end. One of the transients unexpectedly resulted in a negative cloud‐to‐ground discharge. Both positive and negative ends of the transients extended at speeds of 106–107 m/s, while the overall positive leader extension speed was as low as 103–104 m/s. Wideband electric field signatures of the transients were similar to K‐changes, with their millisecond‐ and microsecond‐scale features being associated with the steady current and new breakdowns, respectively. For transients with both ends visible in our optical records, charge transfers and average currents were estimated to be typically a few hundreds of millicoulombs and some hundreds of amperes, respectively.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract This review covers selected results of recent observations of lightning discharges performed across the entire electromagnetic spectrum (radiofrequency, optical, and energetic radiation) at the Lightning Observatory in Gainesville, Florida. The most important results include (a) characterization of the preliminary-breakdown, stepped-leader, and return-stroke processes in high-intensity (⩾50 kA) negative lightning discharges, (b) the first high-speed video images of bidirectional leader that made contact with the ground and produced a return stroke, (c) discovery of negative stepped leader branches colliding with the lateral surface of neighboring branches of the same leader, (d) new data on the occurrence context and properties of compact intracloud discharges, and (e) observation of a terrestrial gamma-ray flash that occurred during a bipolar cloud-to-ground lightning discharge. The results serve to improve our understanding of the physics of lightning with important implications for lightning modeling, lightning protection, and high-energy atmospheric physics studies.more » « less
-
Abstract Using visible‐range and infrared (3–5 μm) high‐speed video cameras, we observed luminosity transients that reilluminated decayed branches of two close (2 to 4 km) negative stepped leaders in Florida. Leader branches were energized via stepping at their tips and, as a result, were most heated near their lower ends, with the hotter sections being connected via cooler sections to the trunk. In the modeling of lightning leaders, usually a single tip is considered. In contrast, in the present study, many (up to 30 per major branch) tips were active at the same time, forming a network‐like structure with a descending multitip “ionization front” whose transverse dimensions were of the order of hundreds of meters. The front exhibited alternating stepping, with each step necessarily generating a positive charge wave traveling from the leader tip up along the channel, like a mini return stroke. We inferred that the step‐related waves can cause luminosity transients in the remnants of decayed negative branches at higher altitudes. Such reactivated branches, in turn, may facilitate further leader stepping at lower altitudes, as first reported by Stolzenburg et al. (2015,
https://doi.org/10.1002/2014JD022933 ). The reactivation process is likely to involve multiple steps, as evidenced by a large number of active tips (some tens per 50‐μs frame) and corresponding electric field pulses occurring at time intervals of 2 μs or less. Additionally, our observations suggest that a transient in one decayed branch can trigger (or assist with triggering of) a transient in another branch. -
Abstract Using visible‐range and infrared (3–5 µm) high‐speed video cameras, we observed collisions of adjacent branches in downward negative stepped leaders. Typically, a lagging (chasing) branch (CB) approached a leading branch (LB) from aside at about 90° angle and connected to the lateral surface of the LB within some tens of meters or less of its tip. We infer that collisions can be facilitated by the attracting force of upward moving positive‐charge wave associated with stepping at the leading branch tip. Outcomes of branch collisions differ. The chasing branch may be absorbed by the LB, rebound, or temporarily bridge two branches. It appears that a heavily branched negative stepped leader creates a highly structured and rapidly changing electric field pattern inside the volume it occupies. We observed abrupt changes in the direction of branch extension, suggesting that the direction of local electric field can differ significantly from the ambient.
-
Abstract An advanced nonlinear and nonuniform distributed circuit (
R L C G ) model of lightning M‐component has been developed. The model accounts for the variation of the series resistanceR of M‐component channel due to its heating by the transient current and its subsequent cooling, longitudinal voltage drop along the channel due to the background continuing current, ohmic losses in the channel corona sheath (represented by shunt conductanceG ), and variation of series inductanceL and shunt capacitanceC of the channel with height above ground. The model was tested against the channel‐base current and corresponding close electric fields measured for seven M‐components in negative lightning triggered using the rocket‐and‐wire technique. Detailed sensitivity analysis was performed for one M‐component. The influences of height‐varying series inductance and shunt capacitance and the length of in‐cloud channel (representing the excitation source) on the computed current and field waveforms were found to be relatively insignificant, while the influences of ohmic losses in the channel corona sheath and voltage drop along the grounded channel were significant. The effects of background continuing current level and grounding resistance were significant for M‐field, but not for M‐current. Model‐predicted overall power and current profiles below the cloud base are consistent with the observed M‐component luminosity profiles and are drastically different from the observed downward leader/upward return stroke profiles. The characteristic feature of M‐components, the time shift between the current onset and close electric field peak (essentially absent for leader/return stroke sequences), was well reproduced by our model.