skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: On a Possible Mechanism of Reactivation of Decayed Branches of Negative Stepped Leaders
Abstract

Using visible‐range and infrared (3–5 μm) high‐speed video cameras, we observed luminosity transients that reilluminated decayed branches of two close (2 to 4 km) negative stepped leaders in Florida. Leader branches were energized via stepping at their tips and, as a result, were most heated near their lower ends, with the hotter sections being connected via cooler sections to the trunk. In the modeling of lightning leaders, usually a single tip is considered. In contrast, in the present study, many (up to 30 per major branch) tips were active at the same time, forming a network‐like structure with a descending multitip “ionization front” whose transverse dimensions were of the order of hundreds of meters. The front exhibited alternating stepping, with each step necessarily generating a positive charge wave traveling from the leader tip up along the channel, like a mini return stroke. We inferred that the step‐related waves can cause luminosity transients in the remnants of decayed negative branches at higher altitudes. Such reactivated branches, in turn, may facilitate further leader stepping at lower altitudes, as first reported by Stolzenburg et al. (2015,https://doi.org/10.1002/2014JD022933). The reactivation process is likely to involve multiple steps, as evidenced by a large number of active tips (some tens per 50‐μs frame) and corresponding electric field pulses occurring at time intervals of 2 μs or less. Additionally, our observations suggest that a transient in one decayed branch can trigger (or assist with triggering of) a transient in another branch.

 
more » « less
Award ID(s):
1701484
NSF-PAR ID:
10449287
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
23
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Our basic knowledge of downward positive lightning leaders is incomplete due to their rarity and limited ability of VHF mapping systems to image positive streamers. Here, using high‐speed optical records and wideband electric field and magnetic field derivative signatures, we examine in detail the development of a descending positive leader, which extended intermittently via alternating branching at altitudes of 4.2 to 1.9 km and involved luminosity transients separated by millisecond‐scale quiet intervals. We show that the transients (a) are mostly initiated in previously created but already decayed branches, at a distance of the order of 100 m above the branch lower extremity, (b) extend bidirectionally with negative charge moving up, (c) establish a temporary (1 ms or so) steady‐current connection to the negative part of the overall bidirectional leader tree, and (d) exhibit brightening accompanied by new breakdowns at the positive leader end. One of the transients unexpectedly resulted in a negative cloud‐to‐ground discharge. Both positive and negative ends of the transients extended at speeds of 106–107 m/s, while the overall positive leader extension speed was as low as 103–104 m/s. Wideband electric field signatures of the transients were similar to K‐changes, with their millisecond‐ and microsecond‐scale features being associated with the steady current and new breakdowns, respectively. For transients with both ends visible in our optical records, charge transfers and average currents were estimated to be typically a few hundreds of millicoulombs and some hundreds of amperes, respectively.

     
    more » « less
  2. Abstract

    Using visible‐range and infrared (3–5 µm) high‐speed video cameras, we observed collisions of adjacent branches in downward negative stepped leaders. Typically, a lagging (chasing) branch (CB) approached a leading branch (LB) from aside at about 90° angle and connected to the lateral surface of the LB within some tens of meters or less of its tip. We infer that collisions can be facilitated by the attracting force of upward moving positive‐charge wave associated with stepping at the leading branch tip. Outcomes of branch collisions differ. The chasing branch may be absorbed by the LB, rebound, or temporarily bridge two branches. It appears that a heavily branched negative stepped leader creates a highly structured and rapidly changing electric field pattern inside the volume it occupies. We observed abrupt changes in the direction of branch extension, suggesting that the direction of local electric field can differ significantly from the ambient.

     
    more » « less
  3. Abstract

    We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission.

     
    more » « less
  4. Abstract

    Positive lightning discharges to ground (+CGs) are relatively rare and considerably less studied than negative ones (-CGs). We present observations of unusual transient phenomena occurring in +CGs and discuss their mechanisms. One of them is a brief electric coupling to a concurrent -CG initiated from a 257-m tall tower located 11 km from the +CG channel. A transient process (stroke) in the -CG flash appears to cause a transient luminosity enhancement (M-component) in the +CG channel. In the course of these essentially simultaneous transients, positive charge is in effect taken from the ground at the position of the tower and injected into the ground at the position of the +CG channel. Recoil leaders reactivating decayed +CG branches near the cloud base are each observed to cause a transient luminosity decrease (dip), as opposed to the expected luminosity increase, in the +CG main channel.

     
    more » « less
  5. Abstract

    Zhang (2019,https://doi.org/10.1002/wrcr.v54.4) criticizes several of the assumptions and parameter choices of the model of Kuil et al. (2018,https://doi.org/10.1002/2017WR021420) and claims that, due to an inconsistency in the irrigation equation, the key findings should be interpreted with much caution. We address each of the comments and show that the conclusions of Kuil et al. (2018,https://doi.org/10.1002/2017WR021420) remain fully valid.

     
    more » « less