skip to main content


Search for: All records

Creators/Authors contains: "Tran, Minh-Binh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we discuss a situation, which could lead to both wave turbulence and collective behavior kinetic equations. The wave turbulence kinetic models appear in the kinetic limit when the wave equations have local differential operators. Viewing wave equations on the lattice as chains of anharmonic oscillators and replacing the local differential operators (short-range interactions) by non-local ones (long-range interactions), we arrive at a new Vlasov-type kinetic model in the mean field limit under the molecular chaos assumption reminiscent of models for collective behavior in which anharmonic oscillators replace individual particles. 
    more » « less
  2. Buttazzo, G. ; Casas, E. ; de Teresa, L. ; Glowinski, R. ; Leugering, G. ; Trélat, E. ; Zhang, X. (Ed.)
    When the temperature of a trapped Bose gas is below the Bose-Einstein transition temperature and above absolute zero, the gas is composed of two distinct components: the Bose-Einstein condensate and the cloud of thermal excitations. The dynamics of the excitations can be described by quantum Boltzmann models. We establish a connection between quantum Boltzmann models and chemical reaction networks. We prove that the discrete differential equations for these quantum Boltzmann models converge to an equilibrium point. Moreover, this point is unique for all initial conditions that satisfy the same conservation laws. In the proof, we then employ a toric dynamical system approach, similar to the one used to prove the global attractor conjecture, to study the convergence to equilibrium of quantum kinetic equations. 
    more » « less
  3. null (Ed.)