skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tran, Thi M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Catalyst-free and reversible step-growth Diels–Alder (DA) polymerization has found a wide range of applications in polymer synthesis and is a promising method to fabricate recyclable thermoplastics. The effectiveness of polymerization and de-polymerization relies on the chemical building blocks, often utilizing furan as the diene and maleimide as the dienophile. Compared to the traditional diene–dienophile or two-component approaches that requires perfect stoichiometry, cyclopentadi-ene (Cp) can serve a dual role via self-dimerization. This internally balanced platform offers a route to access high-molecular-weight polymers and a dynamic handle for polymer recycling, which remains unexplored. Herein, through the reactivity in-vestigation of different telechelic Cp derivatives, the uncontrolled cross-linking of Cp was addressed, revealing the first suc-cessful DA homopolymerization. To demonstrate the generality of our methodology, we synthesized and characterized six Cp homopolymers with backbones derived from common thermoplastics, such as polydimethylsiloxane, hydrogenated poly-butadiene, and ethylene phthalate. Among these materials, the hydrogenated polybutadiene-Cp analog can be thermally de-polymerized (Mn = 68 to 23 kDa) and re-polymerized to the parent polymer (Mn = 68 kDa) under solvent- and catalyst-free conditions. This process was repeated over three cycles without intermediate purification, confirming the efficient thermo-selective recyclability. The varied degradable properties of other four Cp-incorporated thermoplastics were also examined. Overall, this work provides a general methodology to access a new class of reversible homopolymers, potentially expanding the designs and construction of sustainable thermoplastics. 
    more » « less