Abstract Cationic bottlebrush homopolymers are polymerized using a grafting‐through approach by ring‐opening metathesis polymerization (ROMP) to afford well‐defined polymers. Quaternary ammonium macromonomers (MMs) are prepared by quaternizing tertiary amine MMs synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The quaternary ammonium MMs undergo ROMP to target molecular weights (Mn= 30 000–100 000 g mol−1) and a low dispersity (Đ= 1.10–1.30). Halide‐ligand exchange between the third generation Grubbs catalyst (G3) and halide counter ions (bromide and iodide ions) of MMs changes the catalyst activity throughout ROMP, causing it to deviate from pseudo‐first order kinetic behavior; however, the polymerization still follows controlled behavior without significant catalyst termination. Increasing steric bulk of the MMs decreases the polymerization rate as well. Amphiphilic block copolymers are synthesized by sequential polymerization of quaternary ammonium MMs and polystyrene (PS) MMs. Using a PS macroinitiator affords block copolymers with lowerĐvalues as compared to the less active cationic macroinitiator.
more »
« less
Synthesis and Thermo-Selective Recycling of Diels–Alder Cyclopentadiene Thermoplastics
Catalyst-free and reversible step-growth Diels–Alder (DA) polymerization has found a wide range of applications in polymer synthesis and is a promising method to fabricate recyclable thermoplastics. The effectiveness of polymerization and de-polymerization relies on the chemical building blocks, often utilizing furan as the diene and maleimide as the dienophile. Compared to the traditional diene–dienophile or two-component approaches that requires perfect stoichiometry, cyclopentadi-ene (Cp) can serve a dual role via self-dimerization. This internally balanced platform offers a route to access high-molecular-weight polymers and a dynamic handle for polymer recycling, which remains unexplored. Herein, through the reactivity in-vestigation of different telechelic Cp derivatives, the uncontrolled cross-linking of Cp was addressed, revealing the first suc-cessful DA homopolymerization. To demonstrate the generality of our methodology, we synthesized and characterized six Cp homopolymers with backbones derived from common thermoplastics, such as polydimethylsiloxane, hydrogenated poly-butadiene, and ethylene phthalate. Among these materials, the hydrogenated polybutadiene-Cp analog can be thermally de-polymerized (Mn = 68 to 23 kDa) and re-polymerized to the parent polymer (Mn = 68 kDa) under solvent- and catalyst-free conditions. This process was repeated over three cycles without intermediate purification, confirming the efficient thermo-selective recyclability. The varied degradable properties of other four Cp-incorporated thermoplastics were also examined. Overall, this work provides a general methodology to access a new class of reversible homopolymers, potentially expanding the designs and construction of sustainable thermoplastics.
more »
« less
- PAR ID:
- 10527744
- Publisher / Repository:
- ACS Publishing
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- ISSN:
- 0002-7863
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Diels–Alder (DA) reaction, a classic cycloaddition reaction involving a diene and a dienophile to form a cyclohexene, is among the most versatile organic reactions. Theories have predicted thermodynamically unfavorable DA reactions on pristine graphene owing to its low chemical reactivity. We hypothesized that metals like Ni could enhance the reactivity of graphene towards DA reactions through charge transfer. The results indeed showed that metal substrates enhanced the reactivity of graphene in the DA reactions with a diene, 2,3-dimethoxy butadiene (DMBD), and a dienophile, maleic anhydride (MAH), with the activity enhancement in the order of Ni > Cu, and both are more reactive than graphene supported on silicon wafer. The rate constants were estimated to be two times higher for graphene supported on Ni than on silicon wafer. The computational results support the experimentally obtained rate trend of Ni > Cu, both predicted to be greater than unsupported graphene, which is explained by the enhanced graphene–substrate interaction reflected in charge transfer effects with the strongly interacting Ni. This study opens up a new avenue for enhancing the chemical reactivity of pristine graphene through substrate selection.more » « less
-
The choice of chain transfer agent in reversible addition/fragmentation chain transfer polymerization has proven to be instrumental in modulating the dispersity of a certain polyphenyl vinyl ketone (PVK). The monomer, PVK, which can self-initiate when exposed to blue light, was used to synthesize homopolymers, block copolymers by extending with a different monomer and gradient polymers. Regardless of the polymer architecture or degree of polymerization, a consistent trend in polymer dispersity was quantified, with higher loadings of the less active chain transfer agent xanthate leading to higher dispersities. The dispersity could be further modulated by photodegradation of vinyl ketone polymers under UV irradiation.more » « less
-
In this study we investigate the Diels–Alder reaction between methyl acrylate and butadiene, which is catalyzed by BF3 Lewis acid in explicit water solution, using URVA and Local Mode Analysis as major tools complemented with NBO, electron density and ring puckering analyses. We considered four different starting orientations of methyl acrylate and butadiene, which led to 16 DA reactions in total. In order to isolate the catalytic effects of the BF3 catalyst and those of the water environment and exploring how these effects are synchronized, we systematically compared the non-catalyzed reaction in gas phase and aqueous solution with the catalyzed reaction in gas phase and aqueous solution. Gas phase studies were performed at the B3LYP/6-311+G(2d,p) level of theory and studies in aqueous solution were performed utilizing a QM/MM approach at the B3LYP/6-311+G(2d,p)/AMBER level of theory. The URVA results revealed reaction path curvature profiles with an overall similar pattern for all 16 reactions showing the same sequence of CC single bond formation for all of them. In contrast to the parent DA reaction with symmetric substrates causing a synchronous bond formation process, here, first the new CC single bond on the CH2 side of methyl acrylate is formed followed by the CC bond at the ester side. As for the parent DA reaction, both bond formation events occur after the TS, i.e., they do not contribute to the energy barrier. What determines the barrier is the preparation process for CC bond formation, including the approach diene and dienophile, CC bond length changes and, in particular, rehybridization of the carbon atoms involved in the formation of the cyclohexene ring. This process is modified by both the BF3 catalyst and the water environment, where both work in a hand-in-hand fashion leading to the lowest energy barrier of 9.06 kcal/mol found for the catalyzed reaction R1 in aqueous solution compared to the highest energy barrier of 20.68 kcal/mol found for the non-catalyzed reaction R1 in the gas phase. The major effect of the BF3 catalyst is the increased mutual polarization and the increased charge transfer between methyl acrylate and butadiene, facilitating the approach of diene and dienophile and the pyramidalization of the CC atoms involved in the ring formation, which leads to a lowering of the activation energy. The catalytic effect of water solution is threefold. The polar environment leads also to increased polarization and charge transfer between the reacting species, similar as in the case of the BF3 catalyst, although to a smaller extend. More important is the formation of hydrogen bonds with the reaction complex, which are stronger for the TS than for the reactant, thus stabilizing the TS which leads to a further reduction of the activation energy. As shown by the ring puckering analysis, the third effect of water is space confinement of the reacting partners, conserving the boat form of the six-member ring from the entrance to the exit reaction channel. In summary, URVA combined with LMA has led to a clearer picture on how both BF3 catalyst and aqueous environment in a synchronized effort lower the reaction barrier. These new insights will serve to further fine-tune the DA reaction of methyl acrylate and butadiene and DA reactions in general.more » « less
-
Reductive catalysis with earth-abundant metals is currently of increasing importance and shows potential in replacing precious metal catalysis. In this work, we revealed catalytic hydroboration and hydrosilylation of ketones and aldehydes achieved by a structurally defined manganese( ii ) coordination polymer (CP) as a precatalyst under mild conditions. The manganese-catalysed methodology can be applied to a range of functionalized aldehydes and ketones with turnover numbers (TON) of up to 990. Preliminary results on the regioselective catalytic hydrofunctionalization of styrenes by the Mn-CP catalyst are also presented.more » « less
An official website of the United States government

