Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 14, 2025
-
Industry is increasingly adopting private 5G networks to securely manage their wireless devices in retail, manufacturing, natural resources, and healthcare. As with most technology sectors, open- source software is well poised to form the foundation of deployments, whether it is deployed directly or as part of well-maintained proprietary offerings. This paper seeks to examine the use of cryptography and secure randomness in open-source cellular cores. We design a set of 13 CodeQL static program analysis rules for cores written in both C/C++ and Go and apply them to 7 open-source cellular cores implementing 4G and 5G functionality. We identify two significant security vulnerabilities, including predictable generation of TMSIs and improper verification of TLS certificates, with each vulnerability affecting multiple cores. In identifying these flaws, we hope to correct implementations to fix downstream deployments and derivative proprietary projects.more » « lessFree, publicly-accessible full text available June 19, 2025
-
Audio CAPTCHAs are supposed to provide a strong defense for online resources; however, advances in speech-to-text mechanisms have rendered these defenses ineffective. Audio CAPTCHAs cannot simply be abandoned, as they are specifically named by the W3C as important enablers of accessibility. Accordingly, demonstrably more robust audio CAPTCHAs are important to the future of a secure and accessible Web. We look to recent literature on attacks on speech-to-text systems for inspiration for the construction of robust, principle-driven audio defenses. We begin by comparing 20 recent attack papers, classifying and measuring their suitability to serve as the basis of new "robust to transcription" but "easy for humans to understand" CAPTCHAs. After showing that none of these attacks alone are sufficient, we propose a new mechanism that is both comparatively intelligible (evaluated through a user study) and hard to automatically transcribe (i.e., $P({rm transcription}) = 4 times 10^{-5}$). We also demonstrate that our audio samples have a high probability of being detected as CAPTCHAs when given to speech-to-text systems ($P({rm evasion}) = 1.77 times 10^{-4}$). Finally, we show that our method is robust to WaveGuard, a popular mechanism designed to defeat adversarial examples (and enable ASRs to output the original transcript instead of the adversarial one). We show that our method can break WaveGuard with a 99% success rate. In so doing, we not only demonstrate a CAPTCHA that is approximately four orders of magnitude more difficult to crack, but that such systems can be designed based on the insights gained from attack papers using the differences between the ways that humans and computers process audio.more » « less
-
Stalkerware is a form of malware that allows for the abusive monitoring of intimate partners. Primarily deployed on information-rich mobile platforms, these malicious applications allow for collecting information about a victim’s actions and behaviors, including location data, call audio, text messages, photos, and other personal details. While stalkerware has received increased attention from the security community, the ways in which stalkerware authors monetize their efforts have not been explored in depth. This paper represents the first large-scale technical analysis of monetization within the stalkerware ecosystem. We analyze the code base of 6,432 applications collected by the Coalition Against Stalkerware to determine their monetization strategies. We find that while far fewer stalkerware apps use ad libraries than normal apps, 99% of those that do use Google AdMob. We also find that payment services range from traditional in-app billing to cryptocurrency. Finally, we demonstrate that Google’s recent change to their Terms of Service (ToS) did not eliminate these applications, but instead caused a shift to other payment processors, while the apps can still be found on the Play Store; we verify through emulation that these apps often operate in blatant contravention of the ToS. Through this analysis, we find that the heterogeneity of markets and payment processors means that while point solutions can have impact on monetization, a multi-pronged solution involving multiple stakeholders is necessary to mitigate the financial incentive for developing stalkerware.more » « less
-
The targeted transferability of adversarial samples enables attackers to exploit black-box models in the real-world. The most popular method to produce these adversarial samples is optimization attacks, which have been shown to achieve a high level of transferability in some domains. However, recent research has demonstrated that these attack samples fail to transfer when applied to Automatic Speech Recognition Systems (ASRs). In this paper, we investigate factors preventing this transferability via exhaustive experimentation. To do so, we perform an ablation study on each stage of the ASR pipeline. We discover and quantify six factors (i.e., input type, MFCC, RNN, output type, and vocabulary and sequence sizes) that impact the targeted transferability of optimization attacks against ASRs. Future research can leverage our findings to build ASRs that are more robust to other transferable attack types (e.g., signal processing attacks), or to modify architectures in other domains to reduce their exposure to targeted transferability of optimization attacks.more » « less
-
Localization is one form of cooperative spectrum sensing that lets multiple sensors work together to estimate the location of a target transmitter. However, the requisite exchange of spectrum measurements leads to exposure of the physical loca- tion of participating sensors. Furthermore, in some cases, a com- promised participant can reveal the sensitive characteristics of all participants. Accordingly, a lack of sufficient guarantees about data handling discourages such devices from working together. In this paper, we provide the missing data protections by processing spectrum measurements within attestable containers or enclaves. Enclaves provide runtime memory integrity and confidentiality using hardware extensions and have been used to secure various applications [1]–[8]. We use these enclave features as building blocks for new privacy-preserving particle filter protocols that minimize disruption of the spectrum sensing ecosystem. We then instantiate this enclave using ARM TrustZone and Intel SGX, and we show that enclave-based particle filter protocols incur minimal overhead (adding 16 milliseconds of processing to the measurement processing function when using SGX versus unprotected computation) and can be deployed on resource-constrained platforms that support TrustZone (incurring only a 1.01x increase in processing time when doubling particle count from 10,000 to 20,000), whereas cryptographically-based approaches suffer from multiple orders of magnitude higher costs. We effectively deploy enclaves in a distributed environment, dramatically improving current data handling techniques. To our best knowledge, this is the first work to demonstrate privacy-preserving localization in a multi-party environment with reasonable overhead.more » « less
-
null (Ed.)Speech and speaker recognition systems are employed in a variety of applications, from personal assistants to telephony surveillance and biometric authentication. The wide deployment of these systems has been made possible by the improved accuracy in neural networks. Like other systems based on neural networks, recent research has demonstrated that speech and speaker recognition systems are vulnerable to attacks using manipulated inputs. However, as we demonstrate in this paper, the end-to-end architecture of speech and speaker systems and the nature of their inputs make attacks and defenses against them substantially different than those in the image space. We demonstrate this first by systematizing existing research in this space and providing a taxonomy through which the community can evaluate future work. We then demonstrate experimentally that attacks against these models almost universally fail to transfer. In so doing, we argue that substantial additional work is required to provide adequate mitigations in this space.more » « less
-
null (Ed.)Automatic speech recognition and voice identification systems are being deployed in a wide array of applications, from providing control mechanisms to devices lacking traditional interfaces, to the automatic transcription of conversations and authentication of users. Many of these applications have significant security and privacy considerations. We develop attacks that force mistranscription and misidentification in state of the art systems, with minimal impact on human comprehension. Processing pipelines for modern systems are comprised of signal preprocessing and feature extraction steps, whose output is fed to a machine-learned model. Prior work has focused on the models, using white-box knowledge to tailor model-specific attacks. We focus on the pipeline stages before the models, which (unlike the models) are quite similar across systems. As such, our attacks are black-box, transferable, can be tuned to require zero queries to the target, and demonstrably achieve mistranscription and misidentification rates as high as 100% by modifying only a few frames of audio. We perform a study via Amazon Mechanical Turk demonstrating that there is no statistically significant difference between human perception of regular and perturbed audio. Our findings suggest that models may learn aspects of speech that are generally not perceived by human subjects, but that are crucial for model accuracy.more » « less
-
Automatic Speech Recognition (ASR) systems convert speech into text and can be placed into two broad categories: traditional and fully end-to-end. Both types have been shown to be vulnerable to adversarial audio examples that sound benign to the human ear but force the ASR to produce malicious transcriptions. Of these attacks, only the "psychoacoustic" attacks can create examples with relatively imperceptible perturbations, as they leverage the knowledge of the human auditory system. Unfortunately, existing psychoacoustic attacks can only be applied against traditional models, and are obsolete against the newer, fully end-to-end ASRs. In this paper, we propose an equalization-based psychoacoustic attack that can exploit both traditional and fully end-to-end ASRs. We successfully demonstrate our attack against real-world ASRs that include DeepSpeech and Wav2Letter. Moreover, we employ a user study to verify that our method creates low audible distortion. Specifically, 80 of the 100 participants voted in favor of all our attack audio samples as less noisier than the existing state-of-the-art attack. Through this, we demonstrate both types of existing ASR pipelines can be exploited with minimum degradation to attack audio quality.more » « less