skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Trevor, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single-cell genomics technologies are ushering in a new research era. In this review, we summarize the benefits and current challenges of using these technologies to probe the transcriptional regulation of plant development. In addition to profiling cells at a single snapshot in time, researchers have recently produced time-resolved datasets to map cell responses to stimuli. Live-imaging and spatial transcriptomic techniques are rapidly being adopted to link a cell's transcriptional profile with its spatial location within a tissue. Combining these technologies is a powerful spatiotemporal approach to investigate cell plasticity and developmental responses that contribute to plant resilience. Although there are hurdles to overcome, we conclude by discussing how single-cell genomics is poised to address developmental questions in the coming years. 
    more » « less
  2. The generation of exciton–polaritons through strong light–matter interactions represents an emerging platform for exploring quantum phenomena. A significant challenge in colloidal nanocrystal-based polaritonic systems is the ability to operate at room temperature with high fidelity. Here, we demonstrate the generation of room-temperature exciton–polaritons through the coupling of CdSe nanoplatelets (NPLs) with a Fabry–Pérot optical cavity, leading to a Rabi splitting of 74.6 meV. Quantum–classical calculations accurately predict the complex dynamics between the many dark state excitons and the optically allowed polariton states, including the experimentally observed lower polariton photoluminescence emission, and the concentration of photoluminescence intensities at higher in-plane momenta as the cavity becomes more negatively detuned. The Rabi splitting measured at 5 K is similar to that at 300 K, validating the feasibility of the temperature-independent operation of this polaritonic system. Overall, these results show that CdSe NPLs are an excellent material to facilitate the development of room-temperature quantum technologies. 
    more » « less
  3. On 2023 May 29, the LIGO-Virgo-KAGRA Collaboration observed a compact binary coalescence event consistent with a neutron star–black hole merger, though the heavier object of mass $$2.5-4.5\, {\rm M}_{\odot }$$ would fall into the purported lower mass gap. An alternative explanation for apparent observations of events in this mass range has been suggested as strongly gravitationally lensed binary neutron stars. In this scenario, magnification would lead to the source appearing closer and heavier than it really is. Here, we investigate the chances and possible consequences for the GW230529 event to be gravitationally lensed. We find this would require high magnifications and we obtain low rates for observing such an event, with a relative fraction of lensed versus unlensed observed events of $$2\times 10^{-3}$$ at most. When comparing the lensed and unlensed hypotheses accounting for the latest rates and population model, we find a $1/58$ chance of lensing, disfavouring this option. Moreover, when the magnification is assumed to be strong enough to bring the mass of the heavier binary component below the standard upper limits on neutron star masses, we find high probability for the lighter object to have a subsolar mass, making the binary even more exotic than a mass-gap neutron star–black hole system. Even when the secondary is not subsolar, its tidal deformability would likely be measurable, which is not the case for GW230529. Finally, we do not find evidence for extra lensing signatures such as the arrival of additional lensed images, type-II image dephasing, or microlensing. Therefore, we conclude it is unlikely for GW230529 to be a strongly gravitationally lensed binary neutron star signal. 
    more » « less
    Free, publicly-accessible full text available January 23, 2026
  4. Abstract We simulate a black hole accretion disk system with full-transport general relativistic neutrino radiation magnetohydrodynamics for 1.2 s. This system is likely to form after the merger of two compact objects and is thought to be a robust site ofr-process nucleosynthesis. We consider the case of a black hole accretion disk arising from the merger of two neutron stars. Our simulation time coincides with the nucleosynthesis timescale of ther-process (∼1 s). Because these simulations are time-consuming, it is common practice to run for a “short” duration of approximately 0.1–0.3 s. We analyze the nucleosynthetic outflow from this system and compare the results of stopping at 0.12 and 1.2 s. We find that the addition of mass ejected in the longer simulation as well as more favorable thermodynamic conditions from emergent viscous ejecta greatly impacts the nucleosynthetic outcome. We quantify the error in nucleosynthetic outcomes between short and long cuts. 
    more » « less
  5. Kilonovae, one source of electromagnetic emission associated with neutron star mergers, are powered by the decay of radioactive isotopes in the neutron-rich merger ejecta. Models for kilonova emission consistent with the electromagnetic counterpart to GW170817 predict characteristic abundance patterns, determined by the relative balance of different types of material in the outflow. Assuming that the observed source is prototypical, this inferred abundance pattern in turn must matchr-process abundances deduced by other means, such as what is observed in the solar system. We report on analysis comparing the input mass-weighted elemental compositions adopted in our radiative transfer simulations to the mass fractions of elements in the Sun, as a practical prototype for the potentially universal abundance signature from neutron star mergers. We characterize the extent to which our parameter inference results depend on our assumed composition for the dynamical and wind ejecta and examine how the new results compare to previous work. We find that a dynamical ejecta composition calculated using the FRDM2012 nuclear mass and FRLDM fission models with extremely neutron-rich ejecta (Ye= 0.035) along with moderately neutron-rich (Ye= 0.27) wind ejecta composition yields a wind-to-dynamical mass ratio ofMw/Md= 0.47, which best matches the observed AT2017gfo kilonova light curves while also producing the best-matching abundance of neutron capture elements in the solar system, though, allowing for systematics, the ratio may be as high as of order unity. 
    more » « less
  6. We describe a protocol to perform fast and non-arbitrary quality control of single-cell RNA sequencing (scRNA-seq) raw data using scKB and COPILOT. scKB is a wrapper script of kallisto and bustools for accelerated alignment and transcript count matrix generation, which runs significantly faster than the popular tool Cell Ranger. COPILOT then offers non-arbitrary background noise removal by comparing distributions of low-quality and high-quality cells. Together, this protocol streamlines the processing workflow and provides an easy entry for new scRNA-seq users. For complete details on the use and execution of this protocol, please refer to Shahan et al. (2022). 
    more » « less
  7. Abstract As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to search for electromagnetic counterparts of compact object mergers will also begin. The light curves and spectra from the first “kilonova” associated with a binary neutron star merger (NSM) suggests that these sites are hosts of the rapid neutron capture (“r”) process. However, it is unknown just how robust elemental production can be in mergers. Identifying signposts of the production of particular nuclei is critical for fully understanding merger-driven heavy-element synthesis. In this study, we investigate the properties of very neutron-rich nuclei for which superheavy elements (Z≥ 104) can be produced in NSMs and whether they can similarly imprint a unique signature on kilonova light-curve evolution. A superheavy-element signature in kilonovae represents a route to establishing a lower limit on heavy-element production in NSMs as well as possibly being the first evidence of superheavy-element synthesis in nature. Favorable NSM conditions yield a mass fraction of superheavy elementsXZ≥104≈ 3 × 10−2at 7.5 hr post-merger. With this mass fraction of superheavy elements, we find that the component of kilonova light curves possibly containing superheavy elements may appear similar to those arising from lanthanide-poor ejecta. Therefore, photometric characterizations of superheavy-element rich kilonova may possibly misidentify them as lanthanide-poor events. 
    more » « less