Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth’s ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis -
Abstract Trees are arguably the most diverse and complex macro-organisms on Earth. The equally diverse functions of trees directly impact fluxes of carbon, water and energy from the land surface. A number of recent studies have shed light on the substantial within-species variability across plant traits, including aspects of leaf morphology and plant allocation of photosynthates to leaf biomass. Yet, within-tree variability in leaf traits due to microclimatic variations, leaf hydraulic coordination across traits at different physiological scales and variations in leaf traits over a growing season remain poorly studied. This knowledge gap is stymieing the fundamental understanding of what drives trait variation and covariation from tissues to trees to landscapes. Here, we present an extensive dataset measuring within-tree heterogeneity in leaf traits in California’s blue oak (Quercus douglasii) across an edaphic gradient and over the course of a growing season at an oak–grass savanna in Southern CA, USA. We found a high level of within-tree crown leaf area:sapwood area variation that was not attributable to sample height or aspect. We also found a higher level of trait integration at the tree level, rather than branch level, suggesting that trees optimize water use at the organismal level. Despite the large variance in traits within a tree crown and across trees, we did not find strong evidence for adaptive plasticity or acclimation in leaf morphological traits (e.g., changes to phenotype which increased fitness) across temporal and spatial water availability gradients. Collectively, our results highlight strong variation in drought-related physiology, but limited evidence for adaptive trait plasticity over shorter time scales.
-
Abstract Forests are a large carbon sink and could serve as natural climate solutions that help moderate future warming. Thus, establishing forest carbon baselines is essential for tracking climate‐mitigation targets. Western US forests are natural climate solution hotspots but are profoundly threatened by drought and altered disturbance regimes. How these factors shape spatial patterns of carbon storage and carbon change over time is poorly resolved. Here, we estimate live and dead forest carbon density in 19 forested western US ecoregions with national inventory data (2005–2019) to determine: (a) current carbon distributions, (b) underpinning drivers, and (c) recent trends. Potential drivers of current carbon included harvest, wildfire, insect and disease, topography, and climate. Using random forests, we evaluated driver importance and relationships with current live and dead carbon within ecoregions. We assessed trends using linear models. Pacific Northwest (PNW) and Southwest (SW) ecoregions were most and least carbon dense, respectively. Climate was an important carbon driver in the SW and Lower Rockies. Fire reduced live and increased dead carbon, and was most important in the Upper Rockies and California. No ecoregion was unaffected by fire. Harvest and private ownership reduced carbon, particularly in the PNW. Since 2005, live carbon declined across much of the western US, likely from drought and fire. Carbon has increased in PNW ecoregions, likely recovering from past harvest, but recent record fire years may alter trajectories. Our results provide insight into western US forest carbon function and future vulnerabilities, which is vital for effective climate change mitigation strategies.
-
Abstract Spatiotemporal patterns of plant water uptake, loss, and storage exert a first‐order control on photosynthesis and evapotranspiration. Many studies of plant responses to water stress have focused on differences between species because of their different stomatal closure, xylem conductance, and root traits. However, several other ecohydrological factors are also relevant, including soil hydraulics, topographically driven redistribution of water, plant adaptation to local climatic variations, and changes in vegetation density. Here, we seek to understand the relative importance of the dominant species for regional‐scale variations in woody plant responses to water stress. We map plant water sensitivity (PWS) based on the response of remotely sensed live fuel moisture content to variations in hydrometeorology using an auto‐regressive model. Live fuel moisture content dynamics are informative of PWS because they directly reflect vegetation water content and therefore patterns of plant water uptake and evapotranspiration. The PWS is studied using 21,455 wooded locations containing U.S. Forest Service Forest Inventory and Analysis plots across the western United States, where species cover is known and where a single species is locally dominant. Using a species‐specific mean PWS value explains 23% of observed PWS variability. By contrast, a random forest driven by mean vegetation density, mean climate, soil properties, and topographic descriptors explains 43% of observed PWS variability. Thus, the dominant species explains only 53% (23% compared to 43%) of explainable variations in PWS. Mean climate and mean NDVI also exert significant influence on PWS. Our results suggest that studies of differences between species should explicitly consider the environments (climate, soil, topography) in which observations for each species are made, and whether those environments are representative of the entire species range.
-
Understanding the driving mechanisms behind existing patterns of vegetation hydraulic traits and community trait diversity is critical for advancing predictions of the terrestrial carbon cycle because hydraulic traits affect both ecosystem and Earth system responses to changing water availability. Here, we leverage an extensive trait database and a long-term continental forest plot network to map changes in community trait distributions and quantify “trait velocities” (the rate of change in community-weighted traits) for different regions and different forest types across the United States from 2000 to the present. We show that diversity in hydraulic traits and photosynthetic characteristics is more related to local water availability than overall species diversity. Finally, we find evidence for coordinated shifts toward communities with more drought-tolerant traits driven by tree mortality, but the magnitude of responses differs depending on forest type. The hydraulic trait distribution maps provide a publicly available platform to fundamentally advance understanding of community trait change in response to climate change and predictive abilities of mechanistic vegetation models.
-
Abstract Plant functional traits provide a link in process‐based vegetation models between plant‐level physiology and ecosystem‐level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large‐scale vegetation models. However, a more mechanistic representation of water limitation that determines ecosystem responses to plant water stress necessitates a re‐evaluation of trait‐based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, we examine model representations of plant allocation to leaves, which is often empirically set by plant functional type‐specific allometric relationships. We analyze the evolution of the representation of leaf allocation in models of different scales and complexities. We show the impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles using mechanistic hydraulic processes is possible and should become standard practice, rather than using prescribed allometries. The representation of allocation as an emergent property of scarce resource constraints is likely to be critical to representing how global change processes impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly constrained parameters in vegetation models.
-
Abstract Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (
ESM s). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics inESM s, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real‐world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first‐generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter‐disciplinary communication.