skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Truong, Dung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To preserve scientific data created by publicly and/or philanthropically funded research projects and to make it ready for exploitation using recent and ongoing advances in advanced and large-scale computational modeling methods, publicly available data must use in common, now-evolving standards for formatting, identifying and annotating should share data. The OpenNeuro.org archive, built first as a repository for magnetic resonance imaging data based on the Brain Imaging Data Structure formatting standards, aims to house and share all types of human neuroimaging data. Here, we present NEMAR.org, a web gateway to OpenNeuro data for human neuroelectromagnetic data. NEMAR allows users to search through, visually explore and assess the quality of shared electroencephalography (EEG), magnetoencephalography and intracranial EEG data and then to directly process selected data using high-performance computing resources of the San Diego Supercomputer Center via the Neuroscience Gateway (nsgportal.org, NSG), a freely available web portal to high-performance computing serving a variety of neuroscientific analysis environments and tools. Combined, OpenNeuro, NEMAR and NSG form an efficient, integrated data, tools and compute resource for human neuroimaging data analysis and meta-analysis.

    Database URL: https://nemar.org

     
    more » « less
  2. Abstract We present a novel photonic chip design for high bandwidth four-degree optical switches that support high-dimensional switching mechanisms with low insertion loss and low crosstalk in a low power consumption level and a short switching time. Such four-degree photonic chips can be used to build an integrated full-grid Photonic-on-Chip Network (PCN). With four distinct input/output directions, the proposed photonic chips are superior compared to the current bidirectional photonic switches, where a conventionally sizable PCN can only be constructed as a linear chain of bidirectional chips. Our four-directional photonic chips are more flexible and scalable for the design of modern optical switches, enabling the construction of multi-dimensional photonic chip networks that are widely applied for intra-chip communication networks and photonic data centers. More noticeably, our photonic networks can be self-controlling with our proposed Multi-Sample Discovery model, a deep reinforcement learning model based on Proximal Policy Optimization. On a PCN, we can optimize many criteria such as transmission loss, power consumption, and routing time, while preserving performance and scaling up the network with dynamic changes. Experiments on simulated data demonstrate the effectiveness and scalability of the proposed architectural design and optimization algorithm. Perceivable insights make the constructed architecture become the self-controlling photonic-on-chip networks. 
    more » « less