Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A phase shift in the acoustic oscillations of cosmic microwave background (CMB) spectra is a characteristic signature for the presence of non-photon radiation propagating differently from photons, even when the radiation couples to the Standard Model particles solely gravitationally. It is well-established that compared to the presence of free-streaming radiation, CMB spectra shift to higherℓ-modes in the presence of self-interacting non-photon radiation such as neutrinos and dark radiation. In this study, we further demonstrate that the scattering of non-photon radiation with dark matter can further amplify this phase shift. We show that when the energy density of the interacting radiation surpasses that of interacting dark matter around matter-radiation equality, the phase shift enhancement is proportional to the interacting dark matter abundance and remains insensitive to the radiation energy density. Given the presence of dark matter-radiation interaction, this additional phase shift emerges as a generic signature of models featuring an interacting dark sector or neutrino-dark matter scattering. Using neutrino-dark matter scattering as an example, we numerically calculate the amplified phase shift and offer an analytical interpretation of the result by modeling photon and neutrino perturbations with coupled harmonic oscillators. This framework also explains the phase shift contrast between self-interacting and free-streaming neutrinos. Fitting models with neutrino-dark matter or dark radiation-dark matter interactions to CMB and large-scale structure data, we validate the presence of the enhanced phase shift, affirmed by the linear dependence observed between the preferred regions of the sound horizon angleθsand interacting dark matter abundance. An increasedθsand a suppressed matter power spectrum is therefore a generic feature of models containing dark matter scattering with abundant dark radiation.more » « lessFree, publicly-accessible full text available January 1, 2026
-
A<sc>bstract</sc> In studying secondary gamma-ray emissions from Primordial Black Holes (PBHs), the production of scalar particles like pions and axion-like particles (ALPs) via Hawking radiation is crucial. While previous analyses assumed relativistic production, asteroid-mass PBHs, relevant to upcoming experiments like AMEGO-X, likely produce pions and ALPs non-relativistically when their masses exceed 10 MeV. To account for mass dependence in Hawking radiation, we revisit the greybody factors for massive scalars from Schwarzschild black holes, revealing significant mass corrections to particle production rates compared to the projected AMEGO-X sensitivity. We highlight the importance of considering non-relativisticπ0production in interpreting PBH gamma-ray signals, essential for determining PBH properties. Additionally, we comment on the potential suppression of pion production due to form factor effects when producing extended objects via Hawking radiation. We also provide an example code for calculating the Hawking radiation spectrum of massive scalar particles Image missing<#comment/>.more » « less
-
A<sc>bstract</sc> We consider the possibility of indirect detection of dark sector processes by investigating a novel form of interaction between ambient dark matter (DM) and primordial black holes (PBHs). The basic scenario we envisage is that the ambient DM is “dormant”, i.e., it has interactions with the SM, but its potential for an associated SM signal is not realized for various reasons. We argue that the presence of PBHs with active Hawking radiation (independent of any DM considerations) can act as a catalyst in this regard by overcoming the aforementioned bottlenecks. The central point is that PBHs radiate all types of particles, whether in the standard model (SM) or beyond (BSM), which have a mass at or below their Hawking temperature. The emission of such radiation is “democratic” (up to the particle spin), since it is based on a coupling of sorts of gravitational origin. In particular, such shining of (possibly dark sector) particles onto ambient DM can then activate the latter into giving potentially observable SM signals. We illustrate this general mechanism with two specific models. First, we consider asymmetric DM, which is characterized by an absence of ambient anti-DM, and consequently the absence of DM indirect detection signals. In this case, PBHs can “resurrect” such a signal by radiating anti-DM, which then annihilates with ambient DM in order to give SM particles such as photons. In our second example, we consider the PBH emission of dark gauge bosons which can excite ambient DM into a heavier state (which is, again, not ambient otherwise), this heavier state later decays back into DM and photons. Finally, we demonstrate that we can obtain observable signals of these BSM models from asteroid-mass PBHs (Hawking radiating currently with ~$$ \mathcal{O}\left(\textrm{MeV}\right) $$ temperatures) at gamma-ray experiments such as AMEGO-X.more » « lessFree, publicly-accessible full text available February 1, 2026
-
We consider first order cosmological phase transitions (PTs) happening at late times below standard model temperatures . The inherently stochastic nature of bubble nucleation and the finite number of bubbles associated with a late-time PT lead to superhorizon fluctuations in the PT completion time. We compute how such fluctuations eventually source curvature fluctuations with universal properties, independent of the microphysics of the PT dynamics. Using cosmic microwave background (CMB) and large scale structure measurements, we constrain the energy released in a dark-sector PT. For this constraint is stronger than both the current bound from additional neutrino species , and in some cases, even CMB-S4 projections. Future measurements of CMB spectral distortions and pulsar timing arrays will also provide competitive sensitivity for . Published by the American Physical Society2024more » « less
-
Abstract Identifying the anisotropies in a cosmologically sourced stochastic gravitational wave background (SGWB) would be of significance in shedding light on the nature of primordial inhomogeneities.For example, if SGWB carries isocurvature fluctuations, it would provide evidence for a multi-field inflationary origin of these inhomogeneities.However, this is challenging in practice due to finite detector sensitivity and also the presence of the astrophysical foregrounds that can compete with the cosmological signal.In this work, we explore the prospects for measuring cosmological SGWB anisotropies in the presence of an astrophysical counterpart and detector noise.To illustrate the main idea, we perform a Fisher analysis using a well-motivated cosmological SGWB template corresponding to a first order phase transition,and an astrophysical SGWB template corresponding to extra-galactic binary mergers, and compute the uncertainty with which various parameters characterizing the isotropic and anisotropic components can be extracted.We also discuss some subtleties and caveats involving shot noise in the astrophysical foreground.Overall, we show that upcoming experiments, e.g., LISA, Taiji, Einstein Telescope, Cosmic Explorer, and BBO, can all be effective in discovering plausible anisotropic cosmological SGWBs.more » « less
-
A<sc>bstract</sc> Atomic dark matter is a simple but highly theoretically motivated possibility for an interacting dark sector that could constitute some or all of dark matter. We perform a comprehensive study of precision cosmological observables on minimal atomic dark matter, exploring for the first time the full parameter space of dark QED coupling and dark electron and proton masses (αD,$$ {m}_{e_D} $$ ,$$ {m}_{p_D} $$ ) as well as the two cosmological parameters of aDM mass fractionfDand temperature ratioξat time of SM recombination. We also show how aDM can accommodate the (H0, S8) tension from late-time measurements, leading to a better fit than ΛCDM or ΛCDM + dark radiation. Furthermore, including late-time measurements leads to closed contours of preferredξand dark hydrogen binding energy. The dark proton mass is seemingly unconstrained. Our results serve as an important new jumping-off point for future precision studies of atomic dark matter at non-linear and smaller scales.more » « less
-
Abstract Dark radiation (DR) appears as a new physics candidate in various scenarios beyond the Standard Model. While it is often assumed that perturbations in DR are adiabatic, they can easily have an isocurvature component if more than one field was present during inflation, and whose decay products did not all thermalize with each other.By implementing the appropriate isocurvature initial conditions (IC), we derive the constraints on both uncorrelated and correlated DR density isocurvature perturbations from the full Planck 2018 data alone, and also in combination with other cosmological data sets.Our study on free-streaming DR (FDR) updates and generalizes the existing bound on neutrino density isocurvature perturbations by including a varying number of relativistic degrees of freedom, and for coupled DR (CDR) isocurvature, we derive the first bound. We also show that for CDRqualitatively new physical effects arise compared to FDR. One such effect is that for isocurvature IC, FDR gives rise to larger CMB anisotropies compared to CDR — contrary to the adiabatic case.More generally, we find that a blue-tilt of DR isocurvature spectrum is preferred. This gives rise to a larger value of the Hubble constant H 0 compared to the standard ΛCDM+Δ N eff cosmology with adiabatic spectra and relaxes the H 0 tension.more » « less
An official website of the United States government
