- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Tuck, Victoria (2)
-
Balakrishnan, Hamsa (1)
-
Maheshwari, Chinmay (1)
-
Mendoza, Maria G (1)
-
Pant, Yash Vardhan (1)
-
Qin, Victor L (1)
-
Sastry, S. Shankar (1)
-
Sastry, Shankar (1)
-
Seshia, Sanjit (1)
-
Seshia, Sanjit A. (1)
-
Su, Pan-Yang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Advanced Air Mobility (AAM) operations are expected to transform air transportation while challenging current air traffic management practices. By introducing a novel market-based mechanism, we address the problem of on-demand allocation of capacity-constrained airspace to AAM vehicles with heterogeneous and private valuations. We model airspace and air infrastructure as a collection of contiguous regions (or sectors) with constraints on the number of vehicles that simultaneously enter, stay, or exit each region. Vehicles request access to airspace with trajectories spanning multiple regions at different times. We use the graph structure of our airspace model to formulate the allocation problem as a path allocation problem on a time-extended graph. To ensure that the cost information of AAM vehicles remains private, we introduce a novel mechanism that allocates each vehicle a budget of “air-credits” (an artificial currency) and anonymously charges prices for traversing the edges of the time-extended graph. We seek to compute a competitive equilibrium that ensures that: (i) capacity constraints are satisfied, (ii) a strictly positive resource price implies that the sector capacity is fully utilized, and (iii) the allocation is integral and optimal for each AAM vehicle given current prices, without requiring access to individual vehicle utilities. However, a competitive equilibrium with integral allocations may not always exist. We provide sufficient conditions for the existence and computation of a fractional-competitive equilibrium, where allocations can be fractional. Building on these theoretical insights, we propose a distributed, iterative, two-step algorithm that: (1) computes a fractional competitive equilibrium, and (2) derives an integral allocation from this equilibrium. We validate the effectiveness of our approach in allocating trajectories for the emerging urban air mobility service of drone delivery.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Tuck, Victoria; Pant, Yash Vardhan; Seshia, Sanjit A.; Sastry, S. Shankar (, 2021 IEEE Conference on Control Technology and Applications (CCTA))Decentralized planning for multi-agent systems, such as fleets of robots in a search-and-rescue operation, is often constrained by limitations on how agents can communicate with each other. One such limitation is the case when agents can communicate with each other only when they are in line-of-sight (LOS). Developing decentralized planning methods that guarantee safety is difficult in this case, as agents that are occluded from each other might not be able to communicate until it’s too late to avoid a safety violation. In this paper, we develop a decentralized planning method that explicitly avoids situations where lack of visibility of other agents would lead to an unsafe situation. Building on top of an existing Rapidly exploring Random Tree (RRT)-based approach, our method guarantees safety at each iteration. Simulation studies show the effectiveness of our method and compare the degradation in performance with respect to a clairvoyant decentralized planning algorithm where agents can communicate despite not being in LOS of each other.more » « less
An official website of the United States government
