skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DEC-LOS-RRT: Decentralized Path Planning for Multi-robot Systems with Line-of-sight Constrained Communication
Decentralized planning for multi-agent systems, such as fleets of robots in a search-and-rescue operation, is often constrained by limitations on how agents can communicate with each other. One such limitation is the case when agents can communicate with each other only when they are in line-of-sight (LOS). Developing decentralized planning methods that guarantee safety is difficult in this case, as agents that are occluded from each other might not be able to communicate until it’s too late to avoid a safety violation. In this paper, we develop a decentralized planning method that explicitly avoids situations where lack of visibility of other agents would lead to an unsafe situation. Building on top of an existing Rapidly exploring Random Tree (RRT)-based approach, our method guarantees safety at each iteration. Simulation studies show the effectiveness of our method and compare the degradation in performance with respect to a clairvoyant decentralized planning algorithm where agents can communicate despite not being in LOS of each other.  more » « less
Award ID(s):
1743772
PAR ID:
10356666
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE Conference on Control Technology and Applications (CCTA)
Page Range / eLocation ID:
103 to 110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Connected Autonomous Vehicles (CAVs) are expected to enable reliable and efficient transportation systems. Most motion planning algorithms for multi-agent systems are not completely safe because they implicitly assume that all vehicles/agents will execute the expected plan with a small error. This assumption, however, is hard to keep for CAVs since they may have to slow down (e.g., to yield to a jaywalker) or are forced to stop (e.g. break down), sometimes even without a notice. Responsibility-Sensitive Safety (RSS) defines a set of safety rules for each driving scenario to ensure that a vehicle will not cause an accident irrespective of other vehicles' behavior. RSS rules, however, are hard to evaluate for merge, intersection, and unstructured road scenarios. In addition, deadlock situations can happen that are not considered by the RSS. In this paper, we propose a generic version of RSS rules for CAVs that can be applied to any driving scenario. We integrate the proposed RSS rules with the CAV's motion planning algorithm to enable cooperative driving of CAVs. Our approach can also detect and resolve deadlocks in a decentralized manner. We have conducted experiments to verify that a CAV does not cause an accident no matter when other CAVs slow down or stop. We also showcase our deadlock detection and resolution mechanism. Finally, we compare the average velocity and fuel consumption of vehicles when they drive autonomously but not connected with the case that they are connected. 
    more » « less
  2. We study the problem of analyzing the effects of inconsistencies in perception, intent prediction, and decision making among interacting agents. When accounting for these effects, planning is akin to synthesizing policies in uncertain and potentially partially-observable environments. We consider the case where each agent, in an effort to avoid a difficult planning problem, does not consider the inconsistencies with other agents when computing its policy. In particular, each agent assumes that other agents compute their policies in the same way as it does, i.e., with the same objective and based on the same system model. While finding policies on the composed system model, which accounts for the agent interactions, scales exponentially, we efficiently provide quantifiable performance metrics in the form of deltas in the probability of satisfying a given specification. We showcase our approach using two realistic autonomous vehicle case-studies and implement it in an autonomous vehicle simulator. 
    more » « less
  3. Connected Autonomous Vehicles (CAVs) are expected to enable reliable, efficient, and intelligent transportation systems. Most motion planning algorithms for multi-agent systems implicitly assume that all vehicles/agents will execute the expected plan with a small error and evaluate their safety constraints based on this fact. This assumption, however, is hard to keep for CAVs since they may have to change their plan (e.g., to yield to another vehicle) or are forced to stop (e.g., A CAV may break down). While it is desired that a CAV never gets involved in an accident, it may be hit by other vehicles and sometimes, preventing the accident is impossible (e.g., getting hit from behind while waiting behind the red light). Responsibility-Sensitive Safety (RSS) is a set of safety rules that defines the objective of CAV to blame, instead of safety. Thus, instead of developing a CAV algorithm that will avoid any accident, it ensures that the ego vehicle will not be blamed for any accident it is a part of. Original RSS rules, however, are hard to evaluate for merge, intersection, and unstructured road scenarios, plus RSS rules do not prevent deadlock situations among vehicles. In this paper, we propose a new formulation for RSS rules that can be applied to any driving scenario. We integrate the proposed RSS rules with the CAV’s motion planning algorithm to enable cooperative driving of CAVs. We use Control Barrier Functions to enforce safety constraints and compute the energy optimal trajectory for the ego CAV. Finally, to ensure liveness, our approach detects and resolves deadlocks in a decentralized manner. We have conducted different experiments to verify that the ego CAV does not cause an accident no matter when other CAVs slow down or stop. We also showcase our deadlock detection and resolution mechanism using our simulator. Finally, we compare the average velocity and fuel consumption of vehicles when they drive autonomously with the case that they are autonomous and connected. 
    more » « less
  4. In open agent systems, the set of agents that are cooperating or competing changes over time and in ways that are nontrivial to predict. For example, if collaborative robots were tasked with fighting wildfires, they may run out of suppressants and be temporarily unavailable to assist their peers. We consider the problem of planning in these contexts with the additional challenges that the agents are unable to communicate with each other and that there are many of them. Because an agent's optimal action depends on the actions of others, each agent must not only predict the actions of its peers, but, before that, reason whether they are even present to perform an action. Addressing openness thus requires agents to model each other's presence, which becomes computationally intractable with high numbers of agents. We present a novel, principled, and scalable method in this context that enables an agent to reason about others' presence in its shared environment and their actions. Our method extrapolates models of a few peers to the overall behavior of the many-agent system, and combines it with a generalization of Monte Carlo tree search to perform individual agent reasoning in many-agent open environments. Theoretical analyses establish the number of agents to model in order to achieve acceptable worst case bounds on extrapolation error, as well as regret bounds on the agent's utility from modeling only some neighbors. Simulations of multiagent wildfire suppression problems demonstrate our approach's efficacy compared with alternative baselines. 
    more » « less
  5. Synchronizing decisions across multiple agents in realistic settings is problematic since it requires agents to wait for other agents to terminate and communicate about termination reliably. Ideally, agents should learn and execute asynchronously instead. Such asynchronous methods also allow temporally extended actions that can take different amounts of time based on the situation and action executed. Unfortunately, current policy gradient methods are not applicable in asynchronous settings, as they assume that agents synchronously reason about action selection at every time step. To allow asynchronous learning and decision-making, we formulate a set of asynchronous multi-agent actor-critic methods that allow agents to directly optimize asynchronous policies in three standard training paradigms: decentralized learning, centralized learning, and centralized training for decentralized execution. Empirical results (in simulation and hardware) in a variety of realistic domains demonstrate the superiority of our approaches in large multi-agent problems and validate the effectiveness of our algorithms for learning high-quality and asynchronous solutions. 
    more » « less