Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We report the discovery and spectroscopic confirmation of an ultra-faint Milky Way satellite in the constellation of Leo. This system was discovered as a spatial overdensity of resolved stars observed with Dark Energy Camera (DECam) data from an early version of the third data release of the DECam Local Volume Exploration (or DELVE) survey. The low luminosity ( ; ), large size ( pc), and large heliocentric distance ( kpc) are all consistent with the population of ultra-faint dwarf galaxies (UFDs). Using Keck/DEIMOS observations of the system, we were able to spectroscopically confirm nine member stars, while measuring a tentative mass-to-light ratio of and a nonzero metallicity dispersion of , further confirming Leo VI’s identity as a UFD. While the system has a highly elliptical shape, , we do not find any conclusive evidence that it is tidally disrupting. Moreover, despite the apparent on-sky proximity of Leo VI to members of the proposed Crater-Leo infall group, its smaller heliocentric distance and inconsistent position in energy–angular momentum space make it unlikely that Leo VI is part of the proposed infall group.more » « less
- 
            ABSTRACT Current and future Type Ia Supernova (SN Ia) surveys will need to adopt new approaches to classifying SNe and obtaining their redshifts without spectra if they wish to reach their full potential. We present here a novel approach that uses only photometry to identify SNe Ia in the 5-yr Dark Energy Survey (DES) data set using the SuperNNova classifier. Our approach, which does not rely on any information from the SN host-galaxy, recovers SNe Ia that might otherwise be lost due to a lack of an identifiable host. We select $$2{,}298$$ high-quality SNe Ia from the DES 5-yr data set an almost complete sample of detected SNe Ia. More than 700 of these have no spectroscopic host redshift and are potentially new SNIa compared to the DES-SN5YR cosmology analysis. To analyse these SNe Ia, we derive their redshifts and properties using only their light curves with a modified version of the SALT2 light-curve fitter. Compared to other DES SN Ia samples with spectroscopic redshifts, our new sample has in average higher redshift, bluer and broader light curves, and fainter host-galaxies. Future surveys such as LSST will also face an additional challenge, the scarcity of spectroscopic resources for follow-up. When applying our novel method to DES data, we reduce the need for follow-up by a factor of four and three for host-galaxy and live SN, respectively, compared to earlier approaches. Our novel method thus leads to better optimization of spectroscopic resources for follow-up.more » « less
- 
            Abstract We presentgrizphotometric light curves for the full 5 yr of the Dark Energy Survey Supernova (DES-SN) program, obtained with both forced point-spread function photometry on difference images (DiffImg) performed during survey operations, and scene modelling photometry (SMP) on search images processed after the survey. This release contains 31,636DiffImgand 19,706 high-quality SMP light curves, the latter of which contain 1635 photometrically classified SNe that pass cosmology quality cuts. This sample spans the largest redshift (z) range ever covered by a single SN survey (0.1 <z< 1.13) and is the largest single sample from a single instrument of SNe ever used for cosmological constraints. We describe in detail the improvements made to obtain the final DES-SN photometry and provide a comparison to what was used in the 3 yr DES-SN spectroscopically confirmed Type Ia SN sample. We also include a comparative analysis of the performance of the SMP photometry with respect to the real-timeDiffImgforced photometry and find that SMP photometry is more precise, more accurate, and less sensitive to the host-galaxy surface brightness anomaly. The public release of the light curves and ancillary data can be found atgithub.com/des-science/DES-SN5YRand doi:10.5281/zenodo.12720777.more » « less
- 
            ABSTRACT Clusters of galaxies trace the most non-linear peaks in the cosmic density field. The weak gravitational lensing of background galaxies by clusters can allow us to infer their masses. However, galaxies associated with the local environment of the cluster can also be intrinsically aligned due to the local tidal gradient, contaminating any cosmology derived from the lensing signal. We measure this intrinsic alignment in Dark Energy Survey (DES) Year 1 redMaPPer clusters. We find evidence of a non-zero mean radial alignment of galaxies within clusters between redshifts 0.1–0.7. We find a significant systematic in the measured ellipticities of cluster satellite galaxies that we attribute to the central galaxy flux and other intracluster light. We attempt to correct this signal, and fit a simple model for intrinsic alignment amplitude (AIA) to the measurement, finding AIA = 0.15 ± 0.04, when excluding data near the edge of the cluster. We find a significantly stronger alignment of the central galaxy with the cluster dark matter halo at low redshift and with higher richness and central galaxy absolute magnitude (proxies for cluster mass). This is an important demonstration of the ability of large photometric data sets like DES to provide direct constraints on the intrinsic alignment of galaxies within clusters. These measurements can inform improvements to small-scale modelling and simulation of the intrinsic alignment of galaxies to help improve the separation of the intrinsic alignment signal in weak lensing studies.more » « less
- 
            Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <z< 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz> 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z< 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0< 0 in ΛCDM) with over 5σconfidence. We find in flatwCDM. For flatw0waCDM, we find , consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses.more » « less
- 
            ABSTRACT We cross-correlate positions of galaxies measured in data from the first three years of the Dark Energy Survey with Compton-y maps generated using data from the South Pole Telescope (SPT) and the Planck mission. We model this cross-correlation measurement together with the galaxy autocorrelation to constrain the distribution of gas in the Universe. We measure the hydrostatic mass bias or, equivalently, the mean halo bias-weighted electron pressure 〈bhPe 〉, using large-scale information. We find 〈bhPe 〉 to be $$[0.16^{+0.03}_{-0.04},0.28^{+0.04}_{-0.05},0.45^{+0.06}_{-0.10},0.54^{+0.08}_{-0.07},0.61^{+0.08}_{-0.06},0.63^{+0.07}_{-0.08}]$$ meV cm−3 at redshifts z ∼ [0.30, 0.46, 0.62, 0.77, 0.89, 0.97]. These values are consistent with previous work where measurements exist in the redshift range. We also constrain the mean gas profile using small-scale information, enabled by the high-resolution of the SPT data. We compare our measurements to different parametrized profiles based on the cosmo-OWLS hydrodynamical simulations. We find that our data are consistent with the simulation that assumes an AGN heating temperature of 108.5 K but are incompatible with the model that assumes an AGN heating temperature of 108.0 K. These comparisons indicate that the data prefer a higher value of electron pressure than the simulations within r500c of the galaxies’ haloes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
