skip to main content

Search for: All records

Creators/Authors contains: "Turakhia, Dishita G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Integrating fabrication activities into existing video games provides opportunities for players to construct objects from their gameplay and bring the digital content into the physical world. In our prior work, we outlined a framework and developed a toolkit for integrating fabrication activities within existing digital games. Insights from our prior study highlighted the challenge of aligning fabrication mechanics with the existing game mechanics in order to strengthen the player aesthetics. In this paper, we address this challenge and build on our prior work by adding fabrication components to the Mechanics-Dynamics-Aesthetics (MDA) framework. We use this f-MDA framework to analyze the 47 fabrication events from the prior study. We list the new player-object aesthetics that emerge from integrating the existing game mechanics with fabrication mechanics. We identify connections between these emergent player-object aesthetics and the existing game mechanics. We discuss how designers can use this mapping to identify potential game mechanics for integrating with fabrication activities. 
    more » « less
  2. In the last decade, HCI researchers have designed and engineered several systems to lower the entry barrier for beginners and support novices in learning hands-on creative maker skills. These skills range from building electronics to fabricating physical artifacts. While much of the design and engineering of current learning systems is driven by the advances in technology, we can reimagine these systems by reorienting the design goals around constructivist and sociocultural theories of learning to support learning progression, engagement across artistic disciplines, and designing for inclusivity and accessibility. This one-day workshop aims to bring together the HCI researchers in systems engineering and learning sciences, challenge them to reimagine the future design of systems of learning creative maker skills, form connections across disciplines, and promote collaborative research in the systems of learning creative skills. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Adaptive tools that can change their shape to support users with motor tasks have been used in a variety of applications, such as to improve ergonomics and support muscle memory. In this paper, we investigate whether shape-adapting tools can also help in motor skill training. In contrast to static training tools that maintain task difficulty at a fixed level during training, shape-adapting tools can vary task difficulty and thus keep learners’ training at the optimal challenge point, where the task is neither too easy, nor too difficult. To investigate whether shape adaptation helps in motor skill training, we built a study prototype in the form of an adaptive basketball stand that works in three conditions: (1) static, (2) manually adaptive, and (3) auto-adaptive. For the auto-adaptive condition, the tool adapts to train learners at the optimal challenge point where the task is neither too easy nor too difficult. Results from our two user studies show that training in the auto-adaptive condition leads to statistically significant learning gains when compared to the static (F1, 11 = 1.856, p < 0.05) and manually adaptive conditions (F1, 11 = 2.386, p < 0.05). 
    more » « less