skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turmo, Aiko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract LarC catalyzes the CTP-dependent insertion of nickel ion into pyridinium-3,5-bisthiocarboxylic acid mononucleotide (P2TMN), the final biosynthetic step for generating the nickel-pincer nucleotide (NPN) enzyme cofactor. In this study, we characterized a LarC homolog from Moorella thermoacetica (LarCMt) and characterized selected properties of the protein. We ruled out the hypothesis that enzyme inhibition by its product pyrophosphate accounts for its apparent single-turnover activity. Most notably, we identified a cytidinylylated-substrate intermediate that is formed during the reaction of LarCMt. Selected LarCMt variants with substitutions at the predicted CTP-binding site retained substantial amounts of activity, but exhibited greatly reduced levels of the CMP-P2TMN intermediate. In contrast, enhanced amounts of the CMP-P2TMN intermediate were generated when using LarCMt from cells grown on medium without supplemental nickel. On the basis of these results, we propose a functional role for CTP in the unprecedented nickel-insertase reaction during NPN biosynthesis. 
    more » « less
  2. null (Ed.)
    At least two types of pincer complexes are known to exist in biology. A metal-pyrroloquinolone quinone (PQQ) cofactor was first identified in bacterial methanol dehydrogenase, and later also found in selected short-chain alcohol dehydrogenases of other microorganisms. The PQQ-associated metal can be calcium, magnesium, or a rare earth element depending on the enzyme sequence. Synthesis of this organic ligand requires a series of accessory proteins acting on a small peptide, PqqA. Binding of metal to PQQ yields an ONO-type pincer complex. More recently, a nickel-pincer nucleotide (NPN) cofactor was discovered in lactate racemase, LarA. This cofactor derives from nicotinic acid adenine dinucleotide via action of a carboxylase/hydrolase, sulfur transferase, and nickel insertase, resulting in an SCS-type pincer complex. The NPN cofactor likely occurs in selected other racemases and epimerases of bacteria, archaea, and a few eukaryotes. 
    more » « less