skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turney, Keaton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cui, Dongmei (Ed.)
    Branching number, pattern, and distribution of polyethylene (PE) significantly affect the crystalline structures at hierarchical length scales and thus dominate physical properties. Highly branched (HB) PE with over 100 branches per 1000 carbons (100b/1kC) can be synthesized from a sole ethylene feedstock using α-diimine nickel catalysts but results in complex 13C solution-state NMR spectra. In this study, we assign numerous 13C peaks that were unassigned in HBPEs synthesized via three nickel α-diimine catalysts. By application of an additive rule of 13C chemical shifts, several new microstructures are identified. The results successfully reveal new branching microstructures, including (i) the configuration of paired branches, (ii) continual paired branches, and (iii) methylated branch ends. Based on these new assignments, several insights into the chain-walking mechanisms of HBPEs are discussed. 
    more » « less
    Free, publicly-accessible full text available August 12, 2026
  2. Highly branched polyethylene (PE) thermoplastic elastomer (TPE)s can be synthesized using Brookhart-type α-diimine nickel and palladium catalysts, which show a range of branching number and identity. In this work, we aim at elucidating the structure-property relationship of various PE-TPEs through solution-state and solid-state 13C NMR spectroscopy and mechanical tensile testing. By applying solid-state NMR spectroscopy, DSC, and XRD, it was revealed that small degrees of crystallinity (< 5%) yields polyethylenes that are sufficiently reinforced to exhibit TPE behavior. Across PE samples with similar branching numbers, we relate the effects of branch identity, crystallinity, and molecular weight on the tunable mechanical properties. The structure-property relationship of the PE-TPEs will be discussed. 
    more » « less