Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tauman Kalai, Yael (Ed.)In 2003, Cohn and Umans proposed a group-theoretic approach to bounding the exponent of matrix multiplication. Previous work within this approach ruled out certain families of groups as a route to obtaining ω = 2, while other families of groups remain potentially viable. In this paper we turn our attention to matrix groups, whose usefulness within this framework was relatively unexplored. We first show that groups of Lie type cannot prove ω = 2 within the group-theoretic approach. This is based on a representation-theoretic argument that identifies the second-smallest dimension of an irreducible representation of a group as a key parameter that determines its viability in this framework. Our proof builds on Gowers' result concerning product-free sets in quasirandom groups. We then give another barrier that rules out certain natural matrix group constructions that make use of subgroups that are far from being self-normalizing. Our barrier results leave open several natural paths to obtain ω = 2 via matrix groups. To explore these routes we propose working in the continuous setting of Lie groups, in which we develop an analogous theory. Obtaining the analogue of ω = 2 in this potentially easier setting is a key challenge that represents an intermediate goal short of actually proving ω = 2. We give two constructions in the continuous setting, each of which evades one of our two barriers.more » « less
-
Multivariate multipoint evaluation is the problem of evaluating a multivariate polynomial, given as a coefficient vector, simultaneously at multiple evaluation points. In this work, we show that there exists a deterministic algorithm for multivariate multipoint evaluation over any finite field F that outputs the evaluations of an m-variate polynomial of degree less than d in each variable at N points in time (dm + N)1+o(1) · poly(m, d, log |F|) for all m ∈ N and all sufficiently large d ∈ N. A previous work of Kedlaya and Umans (FOCS 2008, SICOMP 2011) achieved the same time complexity when the number of variables m is at most d^{o(1)} and had left the problem of removing this condition as an open problem. A recent work of Bhargava, Ghosh, Kumar and Mohapatra (STOC 2022) answered this question when the underlying field is not too large and has characteristic less than d^{o(1)}. In this work, we remove this constraint on the number of variables over all finite fields, thereby answering the question of Kedlaya and Umans over all finite fields. Our algorithm relies on a non-trivial combination of ideas from three seemingly different previously knownalgorithms for multivariate multipoint evaluation, namely the algorithms of Kedlaya and Umans, that of Björklund, Kaski and Williams (IPEC 2017, Algorithmica 2019), and that of Bhargava, Ghosh, Kumar and Mohapatra, together with a result of Bombieri and Vinogradov from analytic number theory about the distribution of primes in an arithmetic progression. We also present a second algorithm for multivariate multipoint evaluation that is completely elementary and in particular, avoids the use of the Bombieri–Vinogradov Theorem. However, it requires a mild assumption that the field size is bounded by an exponential-tower in d of bounded height.more » « less