skip to main content


Title: Fast Multivariate Multipoint Evaluation Over All Finite Fields
Multivariate multipoint evaluation is the problem of evaluating a multivariate polynomial, given as a coefficient vector, simultaneously at multiple evaluation points. In this work, we show that there exists a deterministic algorithm for multivariate multipoint evaluation over any finite field F that outputs the evaluations of an m-variate polynomial of degree less than d in each variable at N points in time (dm + N)1+o(1) · poly(m, d, log |F|) for all m ∈ N and all sufficiently large d ∈ N. A previous work of Kedlaya and Umans (FOCS 2008, SICOMP 2011) achieved the same time complexity when the number of variables m is at most d^{o(1)} and had left the problem of removing this condition as an open problem. A recent work of Bhargava, Ghosh, Kumar and Mohapatra (STOC 2022) answered this question when the underlying field is not too large and has characteristic less than d^{o(1)}. In this work, we remove this constraint on the number of variables over all finite fields, thereby answering the question of Kedlaya and Umans over all finite fields. Our algorithm relies on a non-trivial combination of ideas from three seemingly different previously knownalgorithms for multivariate multipoint evaluation, namely the algorithms of Kedlaya and Umans, that of Björklund, Kaski and Williams (IPEC 2017, Algorithmica 2019), and that of Bhargava, Ghosh, Kumar and Mohapatra, together with a result of Bombieri and Vinogradov from analytic number theory about the distribution of primes in an arithmetic progression. We also present a second algorithm for multivariate multipoint evaluation that is completely elementary and in particular, avoids the use of the Bombieri–Vinogradov Theorem. However, it requires a mild assumption that the field size is bounded by an exponential-tower in d of bounded height.  more » « less
Award ID(s):
1909683
NSF-PAR ID:
10466778
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
221 to 232
Format(s):
Medium: X
Location:
Denver, CO, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Amir Hashemi (Ed.)
    We present Hermite polynomial interpolation algorithms that for a sparse univariate polynomial f with coefficients from a field compute the polynomial from fewer points than the classical algorithms. If the interpolating polynomial f has t terms, our algorithms, require argument/value triples (w^i, f(w^i), f'(w^i)) for i=0,...,t + ceiling( (t+1)/2 ) - 1, where w is randomly sampled and the probability of a correct output is determined from a degree bound for f. With f' we denote the derivative of f. Our algorithms generalize to multivariate polynomials, higher derivatives and sparsity with respect to Chebyshev polynomial bases. We have algorithms that can correct errors in the points by oversampling at a limited number of good values. If an upper bound B >= t for the number of terms is given, our algorithms use a randomly selected w and, with high probability, ceiling( t/2 ) + B triples, but then never return an incorrect output. The algorithms are based on Prony's sparse interpolation algorithm. While Prony's algorithm and its variants use fewer values, namely, 2t+1 and t+B values f(w^i), respectively, they need more arguments w^i. The situation mirrors that in algebraic error correcting codes, where the Reed-Solomon code requires fewer values than the multiplicity code, which is based on Hermite interpolation, but the Reed-Solomon code requires more distinct arguments. Our sparse Hermite interpolation algorithms can interpolate polynomials over finite fields and over the complex numbers, and from floating point data. Our Prony-based approach does not encounter the Birkhoff phenomenon of Hermite interpolation, when a gap in the derivative values causes multiple interpolants. We can interpolate from t+1 values of f and 2t-1 values of f'. 
    more » « less
  2. Writing concurrent programs is notoriously hard due to scheduling non-determinism. The most common concurrency bugs are data races, which are accesses to a shared resource that can be executed concurrently. Dynamic data-race prediction is the most standard technique for detecting data races: given an observed, data-race-free trace t, the task is to determine whether t can be reordered to a trace t* that exposes a data-race. Although the problem has received significant practical attention for over three decades, its complexity has remained elusive. In this work, we address this lacuna, identifying sources of intractability and conditions under which the problem is efficiently solvable. Given a trace t of size n over k threads, our main results are as follows. First, we establish a general O(k · n2·(k-1) upper-bound, as well as an O(nk) upper-bound when certain parameters of t are constant. In addition, we show that the problem is NP-hard and even W[1]-hard parameterized by k, and thus unlikely to be fixed-parameter tractable. Second, we study the problem over acyclic communication topologies, such as server-clients hierarchies. We establish an O(k2 · d · n2 · log n) upper-bound, where d is the number of shared variables accessed in t. In addition, we show that even for traces with k = 2 threads, the problem has no O(n2-ϵ) algorithm under the Orthogonal Vectors conjecture. Since any trace with 2 threads defines an acyclic topology, our upper-bound for this case is optimal up to polynomial improvements for up to moderate values of k and d. Finally, motivated by existing heuristics, we study a distance-bounded version of the problem, where the task is to expose a data race by a witness trace that is similar to t. We develop an algorithm that works in O(n) time when certain parameters of t are constant. 
    more » « less
  3. Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁢ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁢ ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁢ ( a t ) - h D ⁢ ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁢ ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ⁢ ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁢ ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ⁢ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number. 
    more » « less
  4. We study the problem of efficiently estimating the effect of an intervention on a single variable using observational samples. Our goal is to give algorithms with polynomial time and sample complexity in a non-parametric setting. Tian and Pearl (AAAI ’02) have exactly characterized the class of causal graphs for which causal effects of atomic interventions can be identified from observational data. We make their result quantitative. Suppose 𝒫 is a causal model on a set V of n observable variables with respect to a given causal graph G, and let do(x) be an identifiable intervention on a variable X. We show that assuming that G has bounded in-degree and bounded c-components (k) and that the observational distribution satisfies a strong positivity condition: (i) [Evaluation] There is an algorithm that outputs with probability 2/3 an evaluator for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O (n/eps^2) samples from P and O(mn) time. The evaluator can return in O(n) time the probability P^(v) for any assignment v to V. (ii) [Sampling] There is an algorithm that outputs with probability 2/3 a sampler for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O (n/eps^2) samples from P and O(mn) time. The sampler returns an iid sample from P^ with probability 1 in O(n) time. We extend our techniques to estimate P(Y | do(x)) for a subset Y of variables of interest. We also show lower bounds for the sample complexity, demonstrating that our sample complexity has optimal dependence on the parameters n and eps, as well as if k=1 on the strong positivity parameter. 
    more » « less
  5. Wootters, Mary ; Sanita, Laura (Ed.)
    The orbit of an n-variate polynomial f(x) over a field 𝔽 is the set {f(Ax+b) ∣ A ∈ GL(n, 𝔽) and b ∈ 𝔽ⁿ}, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this paper, we give improved constructions of hitting-sets for the orbit of read-once oblivious algebraic branching programs (ROABPs) and a related model. Over fields with characteristic zero or greater than d, we construct a hitting set of size (ndw)^{O(w²log n⋅ min{w², dlog w})} for the orbit of ROABPs in unknown variable order where d is the individual degree and w is the width of ROABPs. We also give a hitting set of size (ndw)^{O(min{w²,dlog w})} for the orbit of polynomials computed by w-width ROABPs in any variable order. Our hitting sets improve upon the results of Saha and Thankey [Chandan Saha and Bhargav Thankey, 2021] who gave an (ndw)^{O(dlog w)} size hitting set for the orbit of commutative ROABPs (a subclass of any-order ROABPs) and (nw)^{O(w⁶log n)} size hitting set for the orbit of multilinear ROABPs. Designing better hitting sets in large individual degree regime, for instance d > n, was asked as an open problem by [Chandan Saha and Bhargav Thankey, 2021] and this work solves it in small width setting. We prove some new rank concentration results by establishing low-cone concentration for the polynomials over vector spaces, and they strengthen some previously known low-support based rank concentrations shown in [Michael A. Forbes et al., 2013]. These new low-cone concentration results are crucial in our hitting set construction, and may be of independent interest. To the best of our knowledge, this is the first time when low-cone rank concentration has been used for designing hitting sets. 
    more » « less