skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "University, Zhejiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The logarithm ofn‐octanol–water partition coefficient (logP) is frequently used as an indicator of lipophilicity in drug discovery, which has substantial impacts on the absorption, distribution, metabolism, excretion, and toxicity of a drug candidate. Considering that the experimental measurement of the property is costly and time‐consuming, it is of great importance to develop reliable prediction models for logP. In this study, we developed a transfer free energy‐based logP prediction model‐FElogP. FElogP is based on the simple principle that logP is determined by the free energy change of transferring a molecule from water ton‐octanol. The underlying physical method to calculate transfer free energy is the molecular mechanics‐Poisson Boltzmann surface area (MM‐PBSA), thus this method is named as free energy‐based logP (FElogP). The superiority of FElogP model was validated by a large set of 707 structurally diverse molecules in the ZINC database for which the measurement was of high quality. Encouragingly, FElogP outperformed several commonly‐used QSPR or machine learning‐based logP models, as well as some continuum solvation model‐based methods. The root‐mean‐square error (RMSE) and Pearson correlation coefficient (R) between the predicted and measured values are 0.91 log units and 0.71, respectively, while the runner‐up, the logP model implemented in OpenBabel had an RMSE of 1.13 log units and R of 0.67. Given the fact that FElogP was not parameterized against experimental logP directly, its excellent performance is likely to be expanded to arbitrary organic molecules covered by the general AMBER force fields. 
    more » « less
  2. Twenty-four centrifuge model tests of liquefaction and lateral spreading, performed as part of a round robin test program, are shared and compared in this archive. Please see the general report section of the published project for an overview comparison and background of all of the experiments. One document in the report (with “ReadMe” in the file name) describes the organization of the data archive. The comparisons presented in the general report section will serve as an index to help the users find individual experiments of interest. This data from 24 model tests is published as nine separate experiments in this archive (one experiment per centrifuge facility). Each experiment includes two or three model tests and each model test includes between one and three destructive shaking events. All of the tests modeled a 4 m thick deposit of Ottawa F-65 sand with a 5-degree surface slope in a rigid box. The tests covered a range of ground motion intensities and a range of relative densities to define the median response and the sensitivity of the response to relative density and shaking intensity. The nine centrifuge facilities involved in this test program included Cambridge University (UK), Ehime University (Japan), IFSTTAR (France), NCU (Taiwan), KAIST (Korea), Kyoto University (Japan), RPI (USA), UC Davis (USA), and Zhejiang University (China). 
    more » « less
  3. Abstract Ammonia control has received increasing attention as a measure to decrease particulate concentrations. Modeling analysis of observation data from central China over the period of September 2015 to August 2016 shows clear asymmetric responses of particulate pH and mass to ammonia emissions. With a change of ±80% of NHx(NH3+ NH4+), the corresponding ΔpH are +0.5 and −3.0, respectively, and the corresponding particulate NH4+changes are +2.62% and −61.8%, respectively. This asymmetry implies that there is a Critical Total Ammonia Concentration, above which particulate pH and mass are insensitive to ammonia control. Analysis of the observation data suggests that the Critical Total Ammonia Concentration is −25%. The estimated cost for an NHxreduction of 25% is $140 – 320 million for Hubei province, which is the initial cost barrier before ammonia control can effectively affect particulate pH and mass in central China. This cost barrier will increase as NOxand SO2emissions decrease. 
    more » « less
  4. Abstract Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation. 
    more » « less