skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Utomo, Dyas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neutral atomic gas (H I) effectively traces galactic dynamics across mid to large galactocentric radii. However, its limitations in observing small-scale changes within the central few kiloparsecs, coupled with the often observed H Ideficit in galactic centers, necessitates the use of molecular gas emission as a preferred tracer in these regions. Understanding the dynamics of both neutral atomic and molecular gas is crucial for a more complete understanding of how galaxies evolve, funnel gas from the outer disk into their central parts, and eventually form stars. In this work we aim to quantify the dynamics of both, the neutral atomic and molecular gas, in the nearby spiral galaxies NGC 1512, NGC 4535, and NGC 7496 using new MeerKAT H Iobservations together with ALMA CO (2-1) observations from the PHANGS collaboration. We use the analysis tool3DBarolo to fit tilted ring models to the H Iand CO observations. A combined approach of using the H Ito constrain the true disk orientation parameters before applying these to the CO datasets is tested. This paper sets expectations for the results of the upcoming high-resolution H Icoverage of many galaxies in the PHANGS-ALMA sample using MeerKAT or VLA, to establish a robust methodology for characterizing galaxy orientations and deriving dynamics from combing new H Iwith existing CO data. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. Abstract The EDGE-CALIFA survey provides spatially resolved optical integral-field unit and CO spectroscopy for 125 galaxies selected from the Calar Alto Legacy Integral Field Area Survey (CALIFA) Data Release 3 sample. The Extragalactic Database for Galaxy Evolution (EDGE) presents the spatially resolved products of the survey as pixel tables that reduce the oversampling in the original images and facilitate comparison of pixels from different images. By joining these pixel tables to lower-dimensional tables that provide radial profiles, integrated spectra, or global properties, it is possible to investigate the dependence of local conditions on large-scale properties. The database is freely accessible and has been utilized in several publications. We illustrate the use of this database and highlight the effects of CO upper limits on the inferred slopes of the local scaling relations between the stellar mass, star formation rate (SFR), and H2surface densities. We find that the correlation between H2and SFR surface density is the tightest among the three relations. 
    more » « less
  3. Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio 12 / 13 I [ 12 CO ( J = 1 0 ) ] / I [ 13 CO ( J = 1 0 ) ] and the properties of the stars and ionized gas. Higher 12 / 13 values are found in interacting galaxies compared to those in noninteracting galaxies. The global 12 / 13 slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged 12 / 13 profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of 12 / 13 are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged 12 / 13 increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged 12 / 13 does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, 12 / 13 is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on 12 / 13 , which further complicates the interpretations of 12 / 13 variations. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    ABSTRACT Previous work has argued that atomic gas mass estimates of galaxies from 21-cm H i emission are systematically low due to a cold opaque atomic gas component. If true, this opaque component necessitates a $$\sim 35{{\ \rm per\ cent}}$$ correction factor relative to the mass from assuming optically thin H i emission. These mass corrections are based on fitting H i spectra with a single opaque component model that produces a distinct ‘top-hat’ shaped line profile. Here, we investigate this issue using deep, high spectral resolution H i VLA observations of M31 and M33 to test if these top-hat profiles are instead superpositions of multiple H i components along the line of sight. We fit both models and find that $${\gt}80{{\ \rm per\ cent}}$$ of the spectra strongly prefer a multicomponent Gaussian model while $${\lt}2{{\ \rm per\ cent}}$$ prefer the single opacity-corrected component model. This strong preference for multiple components argues against previous findings of lines of sight dominated by only cold H i. Our findings are enabled by the improved spectral resolution (0.42 $${\rm km\, s^{-1}}$$), whereas coarser spectral resolution blends multiple components together. We also show that the inferred opaque atomic ISM mass strongly depends on the goodness-of-fit definition and is highly uncertain when the inferred spin temperature has a large uncertainty. Finally, we find that the relation of the H i surface density with the dust surface density and extinction has significantly more scatter when the inferred H i opacity correction is applied. These variations are difficult to explain without additionally requiring large variations in the dust properties. Based on these findings, we suggest that the opaque H i mass is best constrained by H i absorption studies. 
    more » « less
  7. null (Ed.)
    ABSTRACT We present the first satellite system of the Large Binocular Telescope Satellites Of Nearby Galaxies Survey (LBT-SONG), a survey to characterize the close satellite populations of Large Magellanic Cloud to Milky-Way-mass, star-forming galaxies in the Local Volume. In this paper, we describe our unresolved diffuse satellite finding and completeness measurement methodology and apply this framework to NGC 628, an isolated galaxy with ∼1/4 the stellar mass of the Milky Way. We present two new dwarf satellite galaxy candidates: NGC 628 dwA, and dwB with MV = −12.2 and −7.7, respectively. NGC 628 dwA is a classical dwarf while NGC 628 dwB is a low-luminosity galaxy that appears to have been quenched after reionization. Completeness corrections indicate that the presence of these two satellites is consistent with CDM predictions. The satellite colours indicate that the galaxies are neither actively star forming nor do they have the purely ancient stellar populations characteristic of ultrafaint dwarfs. Instead, and consistent with our previous work on the NGC 4214 system, they show signs of recent quenching, further indicating that environmental quenching can play a role in modifying satellite populations even for hosts smaller than the Milky Way. 
    more » « less
  8. Abstract We measure the molecular gas environment near recent (<100 yr old) supernovae (SNe) using ∼1″ or ≤150 pc resolution CO (2–1) maps from the PHANGS–Atacama Large Millimeter/submillimeter Array (ALMA) survey of nearby star-forming galaxies. This is arguably the first such study to approach the scales of individual massive molecular clouds (Mmol≳ 105.3M). Using the Open Supernova Catalog, we identify 63 SNe within the PHANGS–ALMA footprint. We detect CO (2–1) emission near ∼60% of the sample at 150 pc resolution, compared to ∼35% of map pixels with CO (2–1) emission, and up to ∼95% of the SNe at 1 kpc resolution, compared to ∼80% of map pixels with CO (2–1) emission. We expect the ∼60% of SNe within the same 150 pc beam, as a giant molecular cloud will likely interact with these clouds in the future, consistent with the observation of widespread SN–molecular gas interaction in the Milky Way, while the other ∼40% of SNe without strong CO (2–1) detections will deposit their energy in the diffuse interstellar medium, perhaps helping drive large-scale turbulence or galactic outflows. Broken down by type, we detect CO (2–1) emission at the sites of ∼85% of our 9 stripped-envelope SNe (SESNe), ∼40% of our 34 Type II SNe, and ∼35% of our 13 Type Ia SNe, indicating that SESNe are most closely associated with the brightest CO (2–1) emitting regions in our sample. Our results confirm that SN explosions are not restricted to only the densest gas, and instead exert feedback across a wide range of molecular gas densities. 
    more » « less